4.7 Article

Terahertz modulation characteristics of three nanosols under external field control based on microfluidic chip

期刊

ISCIENCE
卷 25, 期 9, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2022.104898

关键词

-

资金

  1. National Key R&D Program of China [.2021YFB3200100]
  2. Natural Science Foundation of China (NSFC) [61575131]

向作者/读者索取更多资源

In this study, a THz microfluidic chip was fabricated using cycloolefin copolymers with high transmission of THz waves. The THz modulation characteristics of TiO2, Ag, and Fe3O4 nanosols under different fields were investigated. It was found that all three nanosols exhibited broadband modulation performance.
Recently, with the widespread application of metamaterials in the terahertz (THz) modulation field, solid-state THz modulators have made breakthrough progress; however, there are still challenges in preparing flexible THz modulators with wide modulation bandwidths. In this study, a THz microfluidic chip was fabricated using cycloolefin copolymers with high transmission (90%) of THz waves. The THz modulation characteristics of TiO2, Ag, and Fe3O4 nanosols under the control of an optical field, electric field, and magnetic field, respectively, were investigated. Under the action of photogenerated carrier migration, colloidal electrophoresis, and magneto-optical effect, all three nanosols exhibit broadband modulation performance in the frequency range of 0.3-2.4 THz, and the maximum modulation depth is 24%, 33%, and 54%, respectively. Contrary to previous studies based on traditional solid-state materials, this study innovatively explores the possibility of modulating THz waves with liquid materials, laying the foundation for the application of flexible liquid-film THz modulators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据