4.6 Review

High-entropy transition metal chalcogenides as electrocatalysts for renewable energy conversion

期刊

出版社

ELSEVIER
DOI: 10.1016/j.coelec.2022.101010

关键词

High entropy transition metal chalcogenides; Electrocatalysis; CO2 reduction; Water splitting

资金

  1. Alexander von Humboldt Foundation

向作者/读者索取更多资源

High-entropy transition metal chalcogenides (HE-TMCs) exhibit superior electrocatalytic performance due to the tunable d- and p-band positions, enhancing catalytic efficiency in water splitting and CO2 reduction. Additionally, the disordered microstructural state of these compounds provides improved corrosion resistance.
High-entropy transition metal chalcogenides (HE-TMCs) are advantageous in electrocatalytic applications compared to other entropy-stabilized systems owing to the greater orbital extension and energetic match of p-orbitals in chalcogenides with d-orbitals of the transition metals providing additional space to tailor their electronic structure. The high-configurational entropy of HE-TMCs leads to stabilization of cubic rock salt, wurtzite-type and hexagonally packed 2D structures. Due to the multi-element nature of HE-TMCs, the synergy among different elements results in tunable d- and p-band positions. As a consequence, the adsorption energies of electrocatalytic reaction intermediates can be tailored to enhance catalytic performance in water splitting and CO2 reduction. Furthermore, the entropy-stabilized disordered microstructural state of the material endows HE-TMCs with improved corrosion resistance. Despite recent advances in HE-TMC electrocatalysis, challenges such as identification and synthesis of efficient HE-TMCs as well as the identification of catalytically active sites and reaction mechanisms on HE-TMCs remain to be investigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据