4.6 Review

Nitrosative stress in Parkinson's disease

期刊

NPJ PARKINSONS DISEASE
卷 8, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41531-022-00370-3

关键词

-

资金

  1. Canadian Institutes of Health, Research [2014-685]
  2. Natural Sciences and Engineering Research Council of Canada [RG060805, CRDPJ: 490841-15]
  3. Vanier Program

向作者/读者索取更多资源

This review discusses the role of reactive nitrogen species (RNS), specifically nitric oxide (NO), in the pathogenesis of Parkinson's Disease (PD) and its accumulation, as well as the effects of RNS on the loss of dopaminergic neurons and PD-related phenotypes. Studies have shown that over 1/3 of the proteins deposited in Lewy Bodies are post-translationally modified (S-nitrosylated) by RNS, and therapeutics targeting S-nitrosylation of proteins have shown success in PD-related clinical trials.
Parkinson's Disease (PD) is a neurodegenerative disorder characterized, in part, by the loss of dopaminergic neurons within the nigral-striatal pathway. Multiple lines of evidence support a role for reactive nitrogen species (RNS) in degeneration of this pathway, specifically nitric oxide (NO). This review will focus on how RNS leads to loss of dopaminergic neurons in PD and whether RNS accumulation represents a central signal in the degenerative cascade. Herein, we provide an overview of how RNS accumulates in PD by considering the various cellular sources of RNS including nNOS, iNOS, nitrate, and nitrite reduction and describe evidence that these sources are upregulating RNS in PD. We document that over 1/3 of the proteins that deposit in Lewy Bodies, are post-translationally modified (S-nitrosylated) by RNS and provide a broad description of how this elicits deleterious effects in neurons. In doing so, we identify specific proteins that are modified by RNS in neurons which are implicated in PD pathogenesis, with an emphasis on exacerbation of synucleinopathy. How nitration of alpha-synuclein (aSyn) leads to aSyn misfolding and toxicity in PD models is outlined. Furthermore, we delineate how RNS modulates known PD-related phenotypes including axo-dendritic-, mitochondrial-, and dopamine-dysfunctions. Finally, we discuss successful outcomes of therapeutics that target S-nitrosylation of proteins in Parkinson's Disease related clinical trials. In conclusion, we argue that targeting RNS may be of therapeutic benefit for people in early clinical stages of PD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据