4.7 Article

An Optimized Decision Support Model for COVID-19 Diagnostics Based on Complex Fuzzy Hypersoft Mapping

期刊

MATHEMATICS
卷 10, 期 14, 页码 -

出版社

MDPI
DOI: 10.3390/math10142472

关键词

COVID-19; disease modelling; complex numbers (C-numbers); complex fuzzy hypersoft set; mapping; inverse mapping

向作者/读者索取更多资源

This article proposes a mathematical framework based on a complex fuzzy hypersoft set to tackle the uncertainty and ambiguity in the diagnosis and treatment of COVID-19. The framework expands the range of membership function values and categorizes attributes for accurate disease identification and medication selection. Additionally, it can predict the recovery time for patients.
COVID-19 has shaken the entire world economy and affected millions of people in a brief period. COVID-19 has numerous overlapping symptoms with other upper respiratory conditions, making it hard for diagnosticians to diagnose correctly. Several mathematical models have been presented for its diagnosis and treatment. This article delivers a mathematical framework based on a novel agile fuzzy-like arrangement, namely, the complex fuzzy hypersoft (CFHS) set, which is a formation of the complex fuzzy (CF) set and the hypersoft set (an extension of soft set). First, the elementary theory of CFHS is developed, which considers the amplitude term (A-term) and the phase term (P-term) of the complex numbers simultaneously to tackle uncertainty, ambivalence, and mediocrity of data. In two components, this new fuzzy-like hybrid theory is versatile. First, it provides access to a broad spectrum of membership function values by broadening them to the unit circle on an Argand plane and incorporating an additional term, the P-term, to accommodate the data's periodic nature. Second, it categorizes the distinct attribute into corresponding sub-valued sets for better understanding. The CFHS set and CFHS-mapping with its inverse mapping (INM) can manage such issues. Our proposed framework is validated by a study establishing a link between COVID-19 symptoms and medicines. For the COVID-19 types, a table is constructed relying on the fuzzy interval of [0,1]. The computation is based on CFHS-mapping, which identifies the disease and selects the optimum medication correctly. Furthermore, a generalized CFHS-mapping is provided, which can help a specialist extract the patient's health record and predict how long it will take to overcome the infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据