4.7 Article

Protocatechuic acid: A novel detoxication agent of fumonisin B1 for poultry industry

期刊

FRONTIERS IN VETERINARY SCIENCE
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fvets.2022.923238

关键词

fumonisin B1; protocatechuic acid; D-glucose; silymarin; detoxification; chickens

资金

  1. Asian Regional Cooperation Fund
  2. Higher Education Commission, Islamabad Research & Development Division
  3. [12200111]
  4. [14160]

向作者/读者索取更多资源

The study demonstrated that PCA is a promising detoxification agent to reduce FB1 contamination in poultry feed, protecting chicken population from toxin exposure and reducing mycotoxin residues in consumer food products.
Fumonisin B1 (FB1) is a major fusarium mycotoxin that largely contaminates feedstuffs and foods, posing a health risk to both animals and humans. This mycotoxin can enter the human body directly through contaminated food consumption or indirectly by toxins and their metabolites. In a prior study, feed-borne FB1 is one of the leading mycotoxins in breeder eggs, leading to reduced hatchability and gizzard ulceration in chicken progenies. Currently, no effective way is available to remove FB1 from feeds and human-contaminated foods. We hypothesize that FB1 can be reduced to low risk by protocatechuic acid (PCA). To assess the ability of FB1 to be degraded in vivo, 1 ppm of FB1 was treated with PCA, or D-glucose, or silymarin, or anti-FB1 monoclonal antibody. Our study revealed that both D-glucose and PCA exhibited 53.4 and 71.43% degradation, respectively, at 80 degrees C for 2 h, while 35.15% of FB1 detoxification was determined in the silymarin group at 60 degrees C for 0.5 h. A dose-dependent manner was found after treatment with D-glucose or PCA at 80 degrees C for 2 h. As for detoxification of anti-FB1 monoclonal antibody, the 1:3,000 dilution induced significant FB1 detoxification, accounting for 25.9% degradation at 25 degrees C for 2 h. Furthermore, 50 SPF 11-day-old embryonated eggs were divided into 10 groups, with five eggs per group. Post treatment with PCA or D-glucose, or silymarin or anti-FB1 monoclonal antibody, the treated samples were inoculated into albumens and monitored daily until the hatching day. Consequently, 100% of the chickens survived in the D-glucose group and other control groups, except for the FB1 control group, while 80, 80, and 60% hatching rates were found in the PCA-treated group, the anti-FB1 monoclonal antibody-treated group, and the silymarin-treated group. Additionally, both the FB1 group and the silymarin-treated group yielded lower embryo growth than other groups did. Postmortem, lower gizzard ulceration index was determined in the PCA-treated group and the anti-FB1 monoclonal antibody-treated group compared to those of the silymarin-treated group and D-glucose-treated group. Based on the above evidence, PCA is a promising detoxification to reduce FB1 contamination in the poultry industry, contributing to the eradication of mycotoxin residuals in the food chain and maintaining food security for human beings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据