4.6 Article

HTLML: Hybrid AI Based Model for Detection of Alzheimer's Disease

期刊

DIAGNOSTICS
卷 12, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/diagnostics12081833

关键词

Alzheimer's disease; SVM; gaussian NB; XGBoost; DenseNet121; DenseNet201; deep learning; convolutional neural network

资金

  1. King Saud University, Riyadh, Saudi Arabia [RSP2022R498]

向作者/读者索取更多资源

Alzheimer's disease is a degenerative brain condition that affects memory and reasoning abilities. The current diagnostic methods are time-consuming and complex, so a deep learning model that combines transfer learning and machine learning has been developed for early diagnosis. The proposed model achieves high accuracy and specificity, making it a promising approach for clinical treatment.
Alzheimer's disease (AD) is a degenerative condition of the brain that affects the memory and reasoning abilities of patients. Memory is steadily wiped out by this condition, which gradually affects the brain's ability to think, recall, and form intentions. In order to properly identify this disease, a variety of manual imaging modalities including CT, MRI, PET, etc. are being used. These methods, however, are time-consuming and troublesome in the context of early diagnostics. This is why deep learning models have been devised that are less time-intensive, require less high-tech hardware or human interaction, continue to improve in performance, and are useful for the prediction of AD, which can also be verified by experimental results obtained by doctors in medical institutions or health care facilities. In this paper, we propose a hybrid-based AI-based model that includes the combination of both transfer learning (TL) and permutation-based machine learning (ML) voting classifier in terms of two basic phases. In the first phase of implementation, it comprises two TL-based models: namely, DenseNet-121 and Densenet-201 for features extraction, whereas in the second phase of implementation, it carries out three different ML classifiers like SVM, Naive base and XGBoost for classification purposes. The final classifier outcomes are evaluated by means of permutations of the voting mechanism. The proposed model achieved accuracy of 91.75%, specificity of 96.5%, and an F1-score of 90.25. The dataset used for training was obtained from Kaggle and contains 6200 photos, including 896 images classified as mildly demented, 64 images classified as moderately demented, 3200 images classified as non-demented, and 1966 images classified as extremely mildly demented. The results show that the suggested model outperforms current state-of-the-art models. These models could be used to generate therapeutically viable methods for detecting AD in MRI images based on these results for clinical prospective.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据