4.7 Article

OsMLP423 Is a Positive Regulator of Tolerance to Drought and Salt Stresses in Rice

期刊

PLANTS-BASEL
卷 11, 期 13, 页码 -

出版社

MDPI
DOI: 10.3390/plants11131653

关键词

rice; abscisic acid; water deficit; salinity; reactive oxygen

资金

  1. Sichuan Science and Technology Program [2021YFH0085, 2020YJ0352]

向作者/读者索取更多资源

This study identified a drought-inducing gene, OsMLP423, which is strongly induced by drought and salt stresses in rice. The overexpression of OsMLP423 enhances the tolerance of rice to abiotic stresses through an ABA-dependent pathway.
Rice (Oryza sativa L.) is one of the main food crops for human survival, and its yield is often restricted by abiotic stresses. Drought and soil salinity are among the most damaging abiotic stresses affecting today's agriculture. Given the importance of abscisic acid (ABA) in plant growth and abiotic stress responses, it is very important to identify new genes involved in ABA signal transduction. We screened a drought-inducing gene containing about 158 amino acid residues from the transcriptome library of rice exposed to drought treatment, and we found ABA-related cis-acting elements and multiple drought-stress-related cis-acting elements in its promoter sequence. The results of real-time PCR showed that OsMLP423 was strongly induced by drought and salt stresses. The physiological and biochemical phenotype analysis of transgenic plants confirmed that overexpression of OsMLP423 enhanced the tolerance to drought and salt stresses in rice. The expression of OsMLP423-GFP fusion protein indicated that OsMLP423 was located in both the cell membrane system and nucleus. Compared with the wild type, the overexpressed OsMLP423 showed enhanced sensitivity to ABA. Physiological analyses showed that the overexpression of OsMLP423 may regulate the water loss efficiency and ABA-responsive gene expression of rice plants under drought and salt stresses, and it reduces membrane damage and the accumulation of reactive oxygen species. These results indicate that OsMLP423 is a positive regulator of drought and salinity tolerance in rice, governing the tolerance of rice to abiotic stresses through an ABA-dependent pathway. Therefore, this study provides a new insight into the physiological and molecular mechanisms of OsMLP423-mediated ABA signal transduction participating in drought and salt stresses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据