4.6 Article

Anthropogenic Induced Beta Diversity in Plant-Pollinator Networks: Dissimilarity, Turnover, and Predictive Power

期刊

FRONTIERS IN ECOLOGY AND EVOLUTION
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fevo.2022.806615

关键词

beta diversity (beta); interaction networks; anthropogenic impact; plant-pollinator interactions; biogeography

类别

资金

  1. European Community's Framework Program Horizon 2020 for the Connecting Nature Project [730222]
  2. Trinity College Dublin studentship

向作者/读者索取更多资源

This study examines the beta diversity of ecological networks using pollination networks along an urbanization and agricultural intensification gradient. It shows that anthropogenic gradients structure interaction networks and have a greater structuring force than geographical proximity. The study also highlights the importance of species turnover in driving interaction turnover, especially in response to anthropogenic induced environmental dissimilarity.
Biogeography has traditionally focused on the distribution of species, while community ecology has sought to explain the patterns of community composition. Species interactions networks have rarely been subjected to such analyses, as modeling tools have only recently been developed for interaction networks. Here, we examine beta diversity of ecological networks using pollination networks sampled along an urbanization and agricultural intensification gradient in east Leinster, Ireland. We show, for the first time, that anthropogenic gradients structure interaction networks, and exert greater structuring force than geographical proximity. We further showed that species turnover, especially of plants, is the major driver of interaction turnover, and that this contribution increased with anthropogenic induced environmental dissimilarity, but not spatial distance. Finally, to explore the extent to which it is possible to predict each of the components of interaction turnover, we compared the predictive performance of models that included site characteristics and interaction properties to models that contained species level effects. We show that if we are to accurately predict interaction turnover, data are required on the species-specific responses to environmental gradients. This study highlights the importance of anthropogenic disturbances when considering the biogeography of interaction networks, especially in human dominated landscapes where geographical effects can be secondary sources of variation. Yet, to build a predictive science of the biogeography of interaction networks, further species-specific responses need to be incorporated into interaction distribution modeling approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据