4.6 Article

Occurrence of methane-oxidizing bacteria and methanogenic archaea in earth's cave systems-A metagenomic analysis

期刊

FRONTIERS IN ECOLOGY AND EVOLUTION
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fevo.2022.909865

关键词

methanotrophs; methanogens; methane; karst caves; biogeochemical cycles

类别

向作者/读者索取更多资源

Karst caves may serve as a sink for atmospheric methane, with Gammaproteobacterial MOB being the most abundant microbial community and Methanosarcina dominating the methanogens. Additionally, we have created a cave ecosystems protein database (CEPD) for gene profiling.
Karst ecosystems represent up to 25% of the land surface and recent studies highlight their potential role as a sink for atmospheric methane. Despite this, there is limited knowledge of the diversity and distribution of methane-oxidizing bacteria (MOB) or methanogens in karst caves and the sub-surface environment in general. Here, we performed a survey of 14 shotgun metagenomes from cave ecosystems covering a broad set of environmental conditions, to compare the relative abundance and phylogenetic diversity of MOB and methanogens, targeting biomarker genes for methane monooxygenase (pmoA and mmoX) and methyl-coenzyme M reductase (mcrA). Taxonomic analysis of metagenomes showed 0.02-1.28% of classified reads were related to known MOB, of which Gammaproteobacterial MOB were the most abundant making up on average 70% of the surveyed caves' MOB community. Potential for biogenic methane production in caves was also observed, with 0.008-0.39% of reads classified to methanogens and was dominated by sequences related to Methanosarcina. We have also generated a cave ecosystems protein database (CEPD) based on protein level assembly of cave metagenomes that can be used to profile genes of interest.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据