4.6 Article

Identification of Novel Inhibitor of Enoyl-Acyl Carrier Protein Reductase (InhA) Enzyme in Mycobacterium tuberculosis from Plant-Derived Metabolites: An In Silico Study

期刊

ANTIBIOTICS-BASEL
卷 11, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/antibiotics11081038

关键词

FAS-II; gravacridonediol; InhA; molecular docking; Rutaceae family; tuberculosis

资金

  1. Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia [PNURSP 2022 R82]

向作者/读者索取更多资源

This study identified a natural compound gravacridonediol as a potential inhibitor of the key target enzyme InhA of Mycobacterium tuberculosis. Pharmacokinetics and molecular docking analyses were performed on compounds from Ruta graveolens and citrus plants, resulting in the discovery of gravacridonediol with higher binding efficiency than the known inhibitor triclosan.
Mycobacterium tuberculosis (M.tb.) enoyl-acyl carrier protein (ACP) reductase (InhA) is validated as a useful target for tuberculosis therapy and is considered an attractive enzyme to drug discovery. This study aimed to identify the novel inhibitor of the InhA enzyme, a potential target of M.tb. involved in the type II fatty acid biosynthesis pathway that controls mycobacterial cell envelope synthesis. We compiled 80 active compounds from Ruta graveolens and citrus plants belonging to the Rutaceae family for pharmacokinetics and molecular docking analyses. The chemical structures of the 80 phytochemicals and the 3D structure of the target protein were retrieved from the PubChem database and RCSB Protein Data Bank, respectively. The evaluation of druglikeness was performed based on Lipinski's Rule of Five, while the computed phytochemical properties and molecular descriptors were used to predict the ADMET of the compounds. Amongst these, 11 pharmacokinetically-screened compounds were further examined by performing molecular docking analysis with an InhA target using AutoDock 4.2. The docking results showed that gravacridonediol, a major glycosylated natural alkaloid from Ruta graveolens, might possess a promising inhibitory potential against InhA, with a binding energy (B.E.) of -10.80 kcal/mole and inhibition constant (Ki) of 600.24 nM. These contrast those of the known inhibitor triclosan, which has a B.E. of -6.69 kcal/mole and Ki of 12.43 mu M. The binding efficiency of gravacridonediol was higher than that of the well-known inhibitor triclosan against the InhA target. The present study shows that the identified natural compound gravacridonediol possesses drug-like properties and also holds promise in inhibiting InhA, a key target enzyme of M.tb.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据