4.7 Article

Coupled Coccolith-Based Temperature and Productivity High-Resolution Reconstructions in the Eastern Equatorial Pacific During the Last Deglaciation and the Holocene

期刊

FRONTIERS IN MARINE SCIENCE
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmars.2022.865846

关键词

coccolithophores; coccolith; palaeotemperature; palaeoproductivity; Eastern Equatorial Pacific; Termination I; Holocene

资金

  1. UKRI [NE/T009489/1]
  2. European Union [799531]
  3. Spanish Ministerio de Ciencia e Innovacion [CONSOLIDER-INGENIO CSD 200700067, PASUR CGL2009-08651, CONSOLIDER-GRACCIE VACLIODP339, MINECO CTM2012-38248]
  4. Marie Curie Actions (MSCA) [799531] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

We present a new high-resolution reconstruction of annual sea-surface temperatures and net primary productivity in the Eastern Equatorial Pacific (EEP). The addition of new samples improves the SST reconstruction, allowing for higher confidence in the results. The reconstructed NPP shows a general decreasing trend from the late last glacial period to recent times. These reconstructions provide key data for understanding the role of the EEP in global biogeochemical cycles.
We present a new high-resolution reconstruction of annual sea-surface temperatures (SSTa) and net primary productivity (NPP) using novel coccolithophore-based models developed for the Eastern Equatorial Pacific (EEP). We combined published coccolithophore census counts from core-tops in the Eastern Pacific with 32 new samples from the Equatorial region, to derive a new statistical model to reconstruct SSTa. Results show that the addition of the new EEP samples improves existing coccolithophore-based SST-calibrations, and allow reconstructing SSTa in the EEP with higher confidence. We also merged the relative abundance of deep-photic species Florisphaera profunda in the same surface sediment samples with existing calibration datasets for tropical regions, to reconstruct annual NPP. Both temperature and productivity calibrations were successfully applied to fossil coccolith data from Ocean Drilling Project Site 1240, in the EEP. The coccolith-based SSTa estimates show a cooling during the Last Glacial Maximum (LGM) and the Younger Dryas, and warming at the start of the Holocene. This pattern differs in the timing and magnitude of the temperature changes from other available SST-reconstructions based on biogeochemical and faunal proxies. We discuss these discrepancies to be the result of different proxy sensitivities to insolation forcing, seasonal bias, and/or preservation artifacts. Reconstructed annual NPP shows a general decreasing trend from the late last glacial period to recent times, which we relate to the weakening of wind-driven equatorial upwelling towards the Holocene. We also calculated carbon export using our SSTa and NPP reconstructions, and compared to other geochemical-based reconstructions for the same location. Our coupled SSTa-NPP reconstruction provides key data to more fully assess the evolution of primary and export productivity as well as organic carbon burial in the EEP, with implications for its role in global biogeochemical cycles across glacial terminations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据