4.5 Article

Helicobacter pylori CagA Protein Regulating the Biological Characteristics of Gastric Cancer through the miR-155-5p/SMAD2/SP1 axis

期刊

PATHOGENS
卷 11, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/pathogens11080846

关键词

gastric cancer; CagA; miR-155-5p; SMAD2; SP1

资金

  1. research group of Shen family class

向作者/读者索取更多资源

CagA potentially regulates the biological function of GC cells through the miR-155-5p/SMAD2/SP1 axis. miR-155-5p could be a therapeutic target for GC related to CagA.
Helicobacter pylori (Hp) is a grade I carcinogen of gastric cancer (GC), and its high infection rate seriously affects human health. Cytotoxin-associated gene A (CagA) plays a key role in the carcinogenesis of Hp as one of its main virulence factors. miR-155-5p is abnormally expressed in patients with GC, associated with the occurrence and development of cancer. However, little is known about the association between CagA and miR-155-5p. (1) Background: This study explored the association and mechanism of CagA and miR-155-5p in GC. (2) Methods: The CagA sequence was obtained from the NCBI. After sequence optimization, it was connected to the pcDNA3.1 vector to construct a CagA eukaryotic expression plasmid (pcDNA-CagA). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to investigate the expression of miR-155-5p and CagA in GC cells. The function of CagA on GC cells was detected by CCK8, wound healing, and Transwell assays. Similarly, the function of miR-155-5p was also studied through the above functional experiments after the miR-155-5p overexpression and knockdown models had successfully been constructed. The associations among CagA, miR-155-5p, and SMAD2/SP1 were evaluated using RNA immunoprecipitation (RIP) and rescue experiments. (3) Results: The expression of miR-155-5p was significantly reduced in GC cells, and the expression of miR-155-5p was further reduced after CagA induction. Both overexpressed CagA and knockdown miR-155-5p cell models enhanced malignant transformation, whereas overexpressed miR-155-5p inhibited malignant transformation in vitro. The function of miR-155-5p on GC cells could be influenced by CagA. We also found that the influence of miR-155-5p on SMAD2 and SP1 could be regulated by CagA. (4) Conclusions: CagA potentially regulates the biological function of GC cells through the miR-155-5p/SMAD2/SP1 axis. miR-155-5p could be a therapeutic target for GC related to CagA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据