4.7 Article

Optimal operation of multi-source electric vehicle connected microgrid using metaheuristic algorithm

期刊

JOURNAL OF ENERGY STORAGE
卷 52, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2022.105067

关键词

Multi-source microgrid; Electric vehicle; Whale optimization algorithm; Teaching-learning based optimization; Pumped hydro storage; Wind power; Solar power; Diesel generators

向作者/读者索取更多资源

This paper investigates a multi-source microgrid system that utilizes solar photovoltaic, wind turbine, pumped hydro storage system, and a diesel generator as power sources. The study proposes a modified operation strategy to optimize fuel usage and the functioning of the different energy sources. The research also examines the impact of electric vehicles as both sources and energy storage systems. By coordinating the electric vehicles and using a modified charging/discharging algorithm, the study demonstrates the potential to reduce fuel consumption.
In this paper, a multi-source microgrid (MG) has been considered which inducts power from solar photovoltaic (PV), wind turbine, pumped hydro storage system (PHSS) and diesel generator (DG). A problem formulation is proposed on a multi-source MG considering an electric vehicle (EV) as source and load demand. A modified operation strategy is proposed to achieve the lowest possible fuel usage of DG and to optimize the operation of multi-sources used in the MG. When the sum of PV, wind power production and EV discharge is less than the load requirement, the required deficit power should be delivered by DG and PHS. This work considers PV and wind as the primary energy supplying sources, while DG, EV and PHS as the additional energy suppliers with EV and PHS as energy storage systems. By properly coordinating EVs, they can become a major contributor to the successful execution of the MG concept. In this work, a modified charging/discharging algorithm is presented to check the effect of EVs to supply a portion of peak loads with PHS to reduce the fuel consumption of DG in three diverse modes of operation. A modified whale optimization algorithm (WOA) and teaching learning-based optimization (TLBO) are applied to effectively solve this proposed complex problem using the MATLAB platform. The optimum solutions obtained after different independent trials by both the techniques are compared with the latest published techniques. It can be observed that modified WOA performs better than TLBO and other recently published methods on the base case and proposed multi-source MG case in three diverse modes of operation. The outcomes of the simulation confirm the effectiveness of modified WOA in reducing fuel consumption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据