4.6 Article

In-Depth Characterization of Zika Virus Inhibitors Using Cell-Based Electrical Impedance

期刊

MICROBIOLOGY SPECTRUM
卷 10, 期 4, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.00491-22

关键词

Zika virus; cellular assay; impedance; cell-based biosensor; antivirals

资金

  1. KULeuven grant [PF/10/018]
  2. Fonds voor Wetenschappelijk Onderzoek [G.485.08]
  3. Fondation Dormeur Vaduz

向作者/读者索取更多资源

This study utilized ECIS technology to evaluate Zika virus infection in human cells and test the efficacy and mechanism of antiviral compounds. The results demonstrated that CEI can sensitively detect viral infection and provide useful information for the search for antiviral drugs.
In this study, we use electric cell-substrate impedance sensing (ECIS), an established cell-based electrical impedance (CEI) technology, to decipher the kinetic cytopathic effect (CPE) induced by Zika virus (ZIKV) in susceptible human A549 lung epithelial cells and to evaluate several classes of compounds with reported antiviral activity (two entry inhibitors and two replication inhibitors). To validate the assay, we compare the results with those obtained with more traditional in vitro methods based on cell viability and viral yield readouts. We demonstrate that CEI can detect viral infection in a sensitive manner and can be used to determine antiviral potency. Moreover, CEI has multiple benefits compared to conventional assays: the technique is less laborious and better at visualizing the dynamic antiviral activity profile of the compounds, while also it has the ability to determine interesting time points that can be selected as endpoints in assays without continuous readout. We describe several parameters to characterize the compounds' cytotoxicity and their antiviral activity profile. In addition, the CEI patterns provide valuable additional information about the presumed mechanism of action of these compounds. Finally, as a proof of concept, we used CEI to evaluate the antiviral activity of a small series of compounds, for which we demonstrate that the sulfonated polymer PRO2000 inhibits ZIKV with a response profile representative for a viral entry inhibitor. Overall, we demonstrate for the first time that CEI is a powerful technology to evaluate and characterize compounds against ZIKV replication in a real-time, label-free, and noninvasive manner. IMPORTANCE Zika virus can cause serious disease in humans. Unfortunately, no antiviral drugs are available to treat infection. Here, we use an impedance-based method to continuously monitor virus infection in-and damage to-human cells. We can determine the Zika viral dose with this technique and also evaluate whether antiviral compounds protect the cells from damage caused by virus replication. We also show that this technique can be used to further unravel the characteristics of these compounds, such as their toxicity to the cells, and that it might even give further insight in their mechanism of antiviral action. Finally, we also find a novel Zika virus inhibitor, PRO2000. Overall, in this study, we use the impedance technology to-for the first time-evaluate compounds with anti-Zika virus properties, and therefore it can add valuable information in the further search for antiviral drugs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据