4.6 Article

Nuclear Factor AP2X-4 Governs the Expression of Cell Cycle- and Life Stage-Regulated Genes and is Critical for Toxoplasma Growth

期刊

MICROBIOLOGY SPECTRUM
卷 10, 期 4, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.00120-22

关键词

AP2 factor; AP2X-4; virulence; rhoptry neck protein; invasion; bradyzoite differentiation cell cycle

资金

  1. Fok Ying Tung Education Foundation [161021]
  2. National Natural Science Foundation of China [31822054]

向作者/读者索取更多资源

The transcription factor TgAP2X-4 plays a crucial role in the growth and life cycle progression of Toxoplasma gondii. It regulates the expression of cell cycle-regulated genes and genes involved in the development of chronic infection. Inactivation of TgAP2X-4 severely impairs parasite growth, attenuates virulence, and prevents the formation of chronic infection.
Toxoplasma gondii is a ubiquitous pathogen infecting one third of the world's population and diverse animals. It has a complex life cycle alternating among different developmental stages, which contributes to its transmission and pathogenesis. The parasite has a sophisticated gene regulation network that enables timely expression of genes at designated stages. However, little is known about the underlying regulatory mechanisms. Here, we identified an AP2 family transcription factor named TgAP2X-4, which was crucial for parasite growth during the acute infection stage. TgAP2X-4 deletion leads to reduced expression of many genes that are normally upregulated during the M phase of the cell cycle. These include genes that encode rhoptry neck proteins that are key for parasite invasion. As a result, the Dap2X-4 mutant displayed significantly decreased efficiency of host cell invasion. Transcriptomic analyses suggested that TgAP2X-4 also regulates a large group of genes that are typically induced during chronic infection, such as BAG1 and LDH2. Given the diverse impacts on gene expression, TgAP2X-4 inactivation results in severely impaired parasite growth, as well as drastic attenuation of parasite virulence and complete inability to form chronic infection. Therefore, TgAP2X-4 represents a candidate for antitoxoplasmic drug and vaccine designs. IMPORTANCE Toxoplasma gondii has a complicated gene regulation network that allows just in time expression of genes to cope with the physiological needs at each stage during the complex life cycle. However, how such regulation is achieved is largely unknown. Here, we identified a transcription factor named TgAP2X-4 that is critical for the growth and life cycle progression of the parasite. Detailed analyses found that TgAP2X-4 regulated the expression of many cell cycle-regulated genes, including a subset of rhoptry genes that were essential for the parasites to enter host cells. It also regulated the expression of many genes involved in the development of chronic infection. Because of the diverse impacts on gene expression, TgAP2X-4 inactivation caused reduced parasite growth in vitro and attenuated virulence in vivo. Therefore, it is a potential target for drug or vaccine designs against Toxoplasma infections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据