4.6 Article

Differential Impact of SARS-CoV-2 Isolates, Namely, the Wuhan Strain, Delta, and Omicron Variants on Erythropoiesis

期刊

MICROBIOLOGY SPECTRUM
卷 10, 期 4, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.01730-22

关键词

Delta; erythropoiesis; Omicron; SARS-CoV-2; SARS-CoV-2 variants; Wuhan

资金

  1. Canadian Institutes of Health Research (CIHR)

向作者/读者索取更多资源

This study reveals that SARS-CoV-2 variants have differential impacts on erythropoiesis, with CD45(+) erythroid cells exhibiting immunosuppressive properties and potentially contributing to anemia in COVID-19 patients. The findings provide important insights into the understanding of the effects of SARS-CoV-2 variants on erythropoiesis.
SARS-CoV-2 variants exhibit different viral transmissibility and disease severity. However, their impact on erythropoiesis has not been investigated. Here, we show SARS-CoV-2 variants differentially affect erythropoiesis. This is illustrated by the abundance of CD71(+) erythroid cells (CECs) in the blood circulation of COVID-19 patients infected with the original Wuhan strain followed by the Delta and Omicron variants. We observed the CD45(+)CECs are the dominant subpopulation of CECs expressing the receptor, ACE2, and coreceptor, TMPRSS2, and thus, can be targeted by SARS-CoV-2. Also, we found CECs exhibit immunosuppressive properties, specifically CD45(+)CECs are the dominant immunosuppressive cells and via reactive oxygen species (ROS) and arginase I expression can impair CD8(+) T cell functions. In agreement, we observed CECs suppress CD8(+) T cell effector (e.g., Granzyme B expression and degranulation capacity [CD107]), which was partially but significantly reversed with L-arginine supplementation. In light of the enriched frequency of CECs, in particular, CD45(+)CECs in patients infected with the original (Wuhan) strain, we believe this strain has a more prominent impact on hematopoiesis compared with the Delta and Omicron variants. Therefore, our study provides an important insight into the differential impact of SARS-CoV-2 variants on erythropoiesis in COVID-19 patients. IMPORTANCE Silent hypoxia has been the hallmark of SARS-CoV-2 infection. Red blood cells (RBCs) work as gas cargo delivering oxygen to different tissues. However, their immature counterparts reside in the bone marrow and normally absent in the blood circulation. We show SARS-CoV-2 infection is associated with the emergence of immature RBCs so called CD71(+) erythroid cells (CECs) in the blood. In particular, we found these cells were more prevalent in the blood of those infected with the SARS-CoV-2 original strain (Wuhan) followed by the Delta and Omicron variants. This suggests SARS-CoV-2 directly or indirectly impacts RBC production. In agreement, we observed immature RBCs express the receptor (ACE2) and coreceptor (TMPRSS2) for SARS-CoV-2. CECs suppress T cells functions (e.g., Granzyme B and degranulation capacity) in vitro. Therefore, our study provides a novel insight into the differential impact of SARS-CoV-2 variants on erythropoiesis and subsequently the hypoxia commonly observed in COVID-19 patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据