4.7 Article

An In-Silico Investigation to Design a Multi-Epitopes Vaccine against Multi-Drug Resistant Hafnia alvei

期刊

VACCINES
卷 10, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/vaccines10071127

关键词

antimicrobial resistance; vaccine; Hafnia alvei; molecular dynamics simulations

资金

  1. Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia [PNURSP2022R39]

向作者/读者索取更多资源

Antimicrobial resistance is a significant health issue due to antibiotic misuse, leading to high morbidity and mortality rates. This study utilized bacterial pan-genome analysis to develop a vaccine against H. alvei. Various potential vaccine targets were identified and epitope prediction was conducted. The model vaccine construct showed promising results in producing a protective immune response, making it a potential candidate for further research.
Antimicrobial resistance has become a significant health issue because of the misuse of antibiotics in our daily lives, resulting in high rates of morbidity and mortality. Hafnia alvei is a rod-shaped, Gram-negative and facultative anaerobic bacteria. The medical community has emphasized H. alvei's possible association with gastroenteritis. As of now, there is no licensed vaccine for H. alvei, and as such, computer aided vaccine design approaches could be an ideal approach to highlight the potential vaccine epitopes against this bacteria. By using bacterial pan-genome analysis (BPGA), we were able to study the entire proteomes of H. alvei with the aim of developing a vaccine. Based on the analysis, 20,370 proteins were identified as core proteins, which were further used in identifying potential vaccine targets based on several vaccine candidacy parameters. The prioritized vaccine targets against the bacteria are; type 1 fimbrial protein, flagellar hook length control protein (FliK), flagellar hook associated protein (FlgK), curli production assembly/transport protein (CsgF), fimbria/pilus outer membrane usher protein, fimbria/pilus outer membrane usher protein, molecular chaperone, flagellar filament capping protein (FliD), TonB-dependent hemoglobin /transferrin/lactoferrin family receptor, Porin (OmpA), flagellar basal body rod protein (FlgF) and flagellar hook-basal body complex protein (FliE). During the epitope prediction phase, different antigenic, immunogenic, non-Allergenic, and non-Toxic epitopes were predicted for the above-mentioned proteins. The selected epitopes were combined to generate a multi-epitope vaccine construct and a cholera toxin B subunit (adjuvant) was added to enhance the vaccine's antigenicity. Downward analyses of vaccines were performed using a vaccine three-dimensional model. Docking studies have confirmed that the vaccine strongly binds with MHC-I, MHC-II, and TLR-4 immune cell receptors. Additionally, molecular dynamics simulations confirmed that the vaccine epitopes were exposed to nature and to the host immune system and interpreted strong intermolecular binding between the vaccine and receptors. Based on the results of the study, the model vaccine construct seems to have the capacity to produce protective immune responses in the host, making it an attractive candidate for further in vitro and in vivo studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据