4.5 Article

Sol-Gel Synthesis and Photocatalytic Activity of Graphene Oxide/ZnFe2O4-Based Composite Photocatalysts

期刊

FRONTIERS IN MATERIALS
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmats.2022.934759

关键词

ZnO; Fe2O3; composite photocatalysts; sol-gel method; charge carrier; photocatalytic activity

资金

  1. Core Teacher Cultivating Program of the Yellow River Conservancy Technical Institute [2020HYGG04]

向作者/读者索取更多资源

ZnO (ZO), Fe2O3 (FO), and graphene oxide (GO)/ZO/FO/ZnFe2O4 (ZFO) composite photocatalysts with high photocatalytic activity were successfully synthesized using a simple sol-gel method and low-temperature technology. These composite photocatalysts showed efficient degradation of dyes, refractory pollutants, and antibiotics.
ZnO (ZO), Fe2O3 (FO), and graphene oxide (GO)/ZO/FO/ZnFe2O4 (ZFO) composite photocatalysts have been synthesized successfully via a simple sol-gel method and low-temperature technology. The phase structure and microstructural analysis confirmed that the GO/ZO/FO/ZFO magnetic separation photocatalyst is composed of GO, hexagonal ZnO, rhombohedral Fe2O3, and spinel ZnFe2O4 without any other impurities. The GO/ZO/FO/ZFO composite photocatalysts have a high visible light optical absorption coefficient and photocatalytic activity for degrading dyes, refractory pollutants, and antibiotics. The degradation percentages of methyl orange, tetrabromobisphenol A, and oxytetracycline hydrochloride by the GO/ZO/FO/ZFO magnetic separation photocatalyst were 98% for 180 min, 99% for 150 min, and 85% for 180 min, respectively. The special synthesis path leads to the formation of a special heterojunction between GO, ZnO, Fe2O3, and ZnFe2O4, which does not change the optical band gap value of the main lattice Fe2O3, and enhances the surface defects of the GO/ZO/FO/ZFO magnetic separation photocatalyst, resulting in high charge carrier transfer and separation efficiency of the catalyst and then enhanced the photocatalytic activity of the GO/ZO/FO/ZFO magnetic separation photocatalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据