4.5 Article

Novel Alloy Design Concepts Enabling Enhanced Mechanical Properties of High Entropy Alloys

期刊

FRONTIERS IN MATERIALS
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmats.2022.868721

关键词

multi-principal element alloys; solid solution strengthening; stacking fault energy; microstructural engineering; computational material science

资金

  1. SERB-DST
  2. ISRO
  3. BRNS

向作者/读者索取更多资源

The emergence of High Entropy Alloys (HEAs) has shifted the alloy design strategy to multi-principal elements, allowing the development of advanced materials with unique properties. With the help of high throughput experiments, computational tools, and artificial intelligence, it is possible to develop multi-principal element alloys with tailored solid solution strengthening, stacking fault energy, and microstructure.
The emergence of High Entropy Alloys (HEAs) in the world of materials has shifted the alloy design strategy based on a single principal element to the multi-principal elements where compositional space can cover almost the entire span of the higher dimensional phase diagrams. This approach can provide advanced materials with unique properties, including high strength with sufficient ductility and fracture toughness and excellent corrosion and wear resistance for a wide range of temperatures due to the concentrated alloying that cannot be obtained by traditional microalloying based on a single principal element. In addition, the alloy design approach provides new alloy systems in astronomical numbers with variety of microstructural attributes that can yield different properties, and hence conventional trial and error experimental methods for alloy development are redundant. With the help of high throughput experiments along with efficient computational tools, and artificial intelligence, mechanisms based mechanistic development of the multi-principal element alloys with tailored solid solution strengthening, stacking fault energy and microstructure is possible. The current review discusses the various design strategies based on multi-principal elements alloys in semblance with the desired mechanical properties dictated by the micro mechanisms associated with them to overcome the bottlenecks presented by the conventional approaches with possible breakthrough applications. The article will shed light on the current status as well as the future prospects of using these approaches to design novel HEAs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据