4.5 Article

A Novel Method to Quantify Self-Healing Capabilities of Fiber-Reinforced Polymers

期刊

FRONTIERS IN MATERIALS
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmats.2022.932287

关键词

self-healing; circular economy; composites; polymers; mechanical properties; composite healing; healing characterization

向作者/读者索取更多资源

This study proposes a novel and practical method to evaluate the healing efficiency of carbon-reinforced polymer composites. The capacity to recover low-velocity impact damage was evaluated through three-point bending flexural tests. The results show that laminates with +/- 45 degrees fiber orientation provide the best matrix healing efficiency.
The present work investigates a novel and practical method to evaluate the healing efficiency of carbon-reinforced polymer composites. The method should be representative of damage occurring during the lifetime of a composite part, should tend to damage the healable matrix mostly and yet be simple and cost-effective to set up. Thus, the capacity to recover low-velocity impact damage has been evaluated via three-point bending flexural tests. Carbon-reinforced composite laminates were produced using HealTech (TM) T300-TW200-42RW-1250, a commercially healable resin pre-impregnated Torayca T300 3K twill 2 x 2 fabric with an aerial weight of 200 g/m(2). Fibers were oriented at +/- 45 degrees or at 0 degrees-90 degrees, and the laminates were impacted at different energy levels. Flexural properties of undamaged, damaged, and healed samples were compared, and the healing efficiency was calculated as the ratio of healed and undamaged ultimate flexural strength or modulus. Since matrix healing efficiency is the value to characterize, it was shown that +/- 45 degrees laminates could be tested without major fiber damage and, thus, provide the best matrix healing efficiency results. Such a method proved to be 1) representative of early-stage damage of composite FRPs often occurring in the form of delamination or matrix microcracking, and 2) a fast and reliable characterization technique requiring the use of a limited amount of material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据