4.7 Article

Exogenous Application of Methyl Jasmonate at the Booting Stage Improves Rice's Heat Tolerance by Enhancing Antioxidant and Photosynthetic Activities

期刊

AGRONOMY-BASEL
卷 12, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/agronomy12071573

关键词

Oryza spp; high temperature; booting stage; methyl jasmonate

资金

  1. National Natural Science Foundation of China [32071949, 31701366]
  2. National Key R&D Program, Ministry of Science and Technology, China [2017YFD0300100, 2017YFD0300103, 2017YFD0300107]
  3. Collaborative Innovation Center for Modern Crop Production - Province and Ministry (CIC-MCP)
  4. Fundamental Research Funds for the Central Universities, China [KJQN201802]

向作者/读者索取更多资源

High temperatures during the booting stage of rice have a significant impact on yield. The application of methyl jasmonate can alleviate high-temperature stress by enhancing the plants' antioxidant and photosynthetic capacity, thereby reducing yield losses.
With the intensification of global warming, high temperatures during rice's growth and development could further lead to a deterioration in rice yields. Therefore, it is particularly important to further clarify the response of the rice booting stage to high temperatures, and to explore reasonable countermeasures on this basis to reduce yield losses. Methyl jasmonate (MeJA) is a derivative of jasmonates and is widely used for stress resistance. However, the role of MeJA in alleviating high temperatures during the rice booting stage has not been given enough attention. This study aimed to further evaluate the alleviation effect of methyl jasmonate on high-temperature stress during the key growth period of local conventional japonica rice. The results showed that high temperatures (37.5 degrees C/27.0 degrees C) at the booting stage had a significant impact on the antioxidant system of rice and also significantly reduced the photosynthetic capacity of the plant, resulting in a decrease in the final yields. The exogenous spraying of 0.1 mmol/L MeJA at the booting stage could effectively alleviate the influence of high-temperature stress on rice photosynthesis. Exogenous MeJA increased the stomatal conductance (Gs) of rice leaves under high-temperature stress, and correspondingly increased the transpiration rate (Tr) and decreased the organ temperature of rice plants, thereby reducing the damage to the actual photochemical efficiency (Phi PSII) caused by high temperatures. By increasing the carotenoid content (Car) and reducing the malondialdehyde content (MDA), the antioxidant capacity of the plants was restored to a certain extent under exogenous MeJA, and the yield factor showed an increase in the number of grains per panicle and the seed-setting rate of Wuyunjing 24, which alleviated the booting stage yield losses induced by high-temperature stress. In conclusion, the application of exogenous MeJA at the booting stage alleviated the negative consequences of high temperatures by enhancing the plants' antioxidant and photosynthetic capacity. Therefore, MeJA may have a potential role in mitigating the challenges of global warming in rice production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据