4.5 Article

Impairment of 7F2 osteoblast function by simulated partial gravity in a Random Positioning Machine

期刊

NPJ MICROGRAVITY
卷 8, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41526-022-00202-x

关键词

-

资金

  1. NASA [80NSSC18K1480]
  2. Temple University Dissertation completion grant

向作者/读者索取更多资源

Reduced gravity has adverse effects on osteoblast function, and the effects of partial gravity are not well understood. Using a random positioning machine, we simulated partial gravity levels relevant to Mars, Moon, and microgravity conditions. We found that decreasing gravity levels led to reduced cell proliferation and alkaline phosphatase activity, and increased inhibition of mineralization in a dose-dependent manner. The expression of key osteogenic genes was significantly inhibited under Mars-simulating partial gravity, with no further reduction under simulated Moon or microgravity conditions.
The multifaceted adverse effects of reduced gravity pose a significant challenge to human spaceflight. Previous studies have shown that bone formation by osteoblasts decreases under microgravity conditions, both real and simulated. However, the effects of partial gravity on osteoblasts' function are less well understood. Utilizing the software-driven newer version of the Random Positioning Machine (RPMSW), we simulated levels of partial gravity relevant to future manned space missions: Mars (0.38 G), Moon (0.16 G), and microgravity (Micro, similar to 10(-3) G). Short-term (6 days) culture yielded a dose-dependent reduction in proliferation and the enzymatic activity of alkaline phosphatase (ALP), while long-term studies (21 days) showed a distinct dose-dependent inhibition of mineralization. By contrast, expression levels of key osteogenic genes (Alkaline phosphatase, Runt-related Transcription Factor 2, Sparc/osteonectin) exhibited a threshold behavior: gene expression was significantly inhibited when the cells were exposed to Mars-simulating partial gravity, and this was not reduced further when the cells were cultured under simulated Moon or microgravity conditions. Our data suggest that impairment of cell function with decreasing simulated gravity levels is graded and that the threshold profile observed for reduced gene expression is distinct from the dose dependence observed for cell proliferation, ALP activity, and mineral deposition. Our study is of relevance, given the dearth of research into the effects of Lunar and Martian gravity for forthcoming space exploration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据