4.6 Article

In-Depth Understanding of ICD Completion Technology Working Principle

期刊

PROCESSES
卷 10, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/pr10081493

关键词

ICD; RCP; completion technologies; CFD; heavy oil; fluid-solid interaction; porous media flow

资金

  1. Information and Technology Department of the University of Los Andes

向作者/读者索取更多资源

This article presents a numerical study on the working principle of rate-controlled production valves, providing a deep understanding of fluid dynamics near the wellbore, completion assembly, and RCP valves. It offers insights for future research on improving multiphase flow efficiency.
The rate-controlled production (RCP) inflow control devices (ICDs) are valves placed in the lower completion of oil and gas wells, capable of autonomously controlling the reservoir inflow. This completion technology self-regulates the inflow of undesired phases, such as water, by choking the flow after the breakthrough event, thus improving the recovery factor and reducing water production. In this context, this article presents a numerical study that describes the working principle of RCP valves based on a computational fluid dynamics (CFD) analysis. The numerical models are based on the conservation equations of fluid flow, the volume of fluid (VOF) multiphase flow model, and the dynamic fluid body interaction (DFBI) model to simulate the valve's movement caused by its interaction with the flow. This study demonstrates the possibility of studying RCP valves alone or coupled with the whole completion assembly and reservoir rock. The difference in the valve efficiency after considering the entire completion assembly and reservoir rock is 19% less compared with the stand-alone analysis of the valve. Finally, this study provides a deep understanding of the fluid dynamics near the wellbore, the completion assembly, and the RCP valves, along with its chocking, which could be helpful to future researchers interested in improving multiphase flow efficiency in subsurface processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据