4.7 Article

Exogenous iron impairs the anti-cancer effect of ascorbic acid both in vitro and in vivo

期刊

JOURNAL OF ADVANCED RESEARCH
卷 46, 期 -, 页码 149-158

出版社

ELSEVIER
DOI: 10.1016/j.jare.2022.06.011

关键词

Ascorbic acid; ROS; Iron; Necrosis

向作者/读者索取更多资源

This study aims to explore the anti-cancer mechanisms of ascorbic acid (AA) and the interaction between AA and iron. High concentrations of AA showed cytotoxicity in cancer cells and induced ROS-dependent non-apoptotic cell death. Surprisingly, exogenous iron could reverse AA-induced ROS generation, Ca2+ overload, and cell death, and iron supplements also impaired the in vivo anti-tumor activity of AA.
Introduction: The anti-cancer effect of high concentrations of ascorbic acid (AA) has been well established while its underlying mechanisms remain unclear. The association between iron and AA has attracted great attention but was still controversial due to the complicated roles of iron in tumors. Objectives: Our study aims to explore the anti-cancer mechanisms of AA and the interaction between AA and iron in cancer.Methods: The MTT and ATP assays were used to evaluate the cytotoxicity of AA. Reactive oxygen species (ROS) generation, calcium (Ca2+), and lipid peroxidation were monitored with flow cytometry. Mitochondrial dysfunction was assessed by mitochondrial membrane potential (MMP) detection with JC-1 or tetramethylrhodamine methyl ester (TMRM) staining. Mitochondrial swelling was monitored with MitoTracker Green probe. FeSO4 (Fe2+), FeCl3 (Fe3+), Ferric ammonium citrate (Fe3+), hemin chloride (Fe3+) were used as an iron donor to investigate the effects of iron on AA's anti-tumor activity. The in vivo effects of AA and iron were analyzed in xenograft zebrafish and allograft mouse models.Results: High concentrations of AA exhibited cytotoxicity in a panel of cancer cells. AA triggered ROS-dependent non-apoptotic cell death. AA-induced cell death was essentially mediated by the accumulated intracellular Ca2+, which was partly originated from endoplasmic reticulum (ER). Surprisingly, exogenous iron could significantly reverse AA-induced ROS generation, Ca2+ overloaded, and cell death. Especially, the iron supplements significantly impaired the in vivo anti-tumor activity of AA.Conclusions: Our study elucidated the protective roles of iron in ROS/Ca2+ mediated necrosis triggered by AA both in vitro and in vivo, which might shed novel insight into the anti-cancer mechanisms and provide clinical application strategies for AA in cancer treatment.(c) 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据