4.7 Article

Novel cleavage sites identified in SARS-CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies

期刊

CELL DISCOVERY
卷 8, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41421-022-00419-w

关键词

-

向作者/读者索取更多资源

This study identifies two previously unidentified Cathepsin L (CTSL) cleavage sites in the spike protein of SARS-CoV-2. CTSL cleavage promotes the adoption of a specific conformation by the spike protein, facilitating receptor binding and membrane fusion. Inhibitors targeting CTSL not only block viral infection in cells, but also reduce live virus infection in lung tissues. CTSL-specific inhibitors show promising effects in preventing live virus infection in animal models. Inhibition of CTSL cleavage could be a potential strategy for developing mutation-resistant therapies.
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important target for vaccine and drug development. However, the rapid emergence of variant strains with mutated S proteins has rendered many treatments ineffective. Cleavage of the S protein by host proteases is essential for viral infection. Here, we discovered that the S protein contains two previously unidentified Cathepsin L (CTSL) cleavage sites (CS-1 and CS-2). Both sites are highly conserved among all known SARS-CoV-2 variants. Our structural studies revealed that CTSL cleavage promoted S to adopt receptor-binding domain (RBD) up activated conformations, facilitating receptor-binding and membrane fusion. We confirmed that CTSL cleavage is essential during infection of all emerged SARS-CoV-2 variants (including the recently emerged Omicron variant) by pseudovirus (PsV) infection experiment. Furthermore, we found CTSL-specific inhibitors not only blocked infection of PsV/live virus in cells but also reduced live virus infection of ex vivo lung tissues of both human donors and human ACE2-transgenic mice. Finally, we showed that two CTSL-specific inhibitors exhibited excellent In vivo effects to prevent live virus infection in human ACE2-transgenic mice. Our work demonstrated that inhibition of CTSL cleavage of SARS-CoV-2 S protein is a promising approach for the development of future mutation-resistant therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据