4.2 Article

Mercury uptake and effects on growth in Jatropha curcas

期刊

JOURNAL OF ENVIRONMENTAL SCIENCES
卷 48, 期 -, 页码 120-125

出版社

SCIENCE PRESS
DOI: 10.1016/j.jes.2015.10.036

关键词

Jatropha curcas; Phytoextraction; Mercury; Hydroponic; Growth inhibition

资金

  1. University of Cordoba, Laboratory of Toxicology and Environmental Management, Monteria, Colombia
  2. Research Center of the University of Cordoba [FCB-01]
  3. Administrative Department of Science, Technology and Innovation, COLCIENCIAS, Bogota, Colombia [111248925604, 472]

向作者/读者索取更多资源

The use of metal-accumulating plants for the phytoremediation of contaminated soils is gaining more attention. Mercury (Hg)-contaminated soils from historical gold mines represent a potential risk to human health and the environment. Therefore, Jatropha curcas plant, that has shown its tolerance to these environments, is a species of particular interest to implement phytoremediation techniques in gold mining sites. In this work, the behavior of J. curcas was assessed in different hydroponic cultures fortified with Hg at concentrations of 5, 10, 20, 40, and 80 mu g Hg/mL (T5, T10, T20, T40 and T80, respectively). After exposure, plant growth, net photosynthesis, leaf area, and Hg accumulation were determined and variables such as net Hg uptake, effective Hg accumulation, translocation and bioaccumulation factors were calculated. Accumulation of Hg in root and leaf tissues increased with respect to the Hg concentrations in the hydroponic culture, with statistically significant differences (p < 0.05) among treatments. Moreover, Hg concentration in roots was 7 and 12-fold higher in average than in plant leaves and shoots, respectively. Many effects were found in the development of plants, especially related with loss of biomass and leaf area, with significant growth inhibition related to control values (>50% with treatment T5). Moreover, percentage of inhibition was even higher (>60%) with same treatment for net photosynthesis. Finally, it should be highlighted that for T40 and T80 treatments, plant growth and photosynthesis were almost completely depleted (88%-95%). (C) 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据