4.6 Article

Transcriptomes of Injured Lamprey Axon Tips: Single-Cell RNA-Seq Suggests Differential Involvement of MAPK Signaling Pathways in Axon Retraction and Regeneration after Spinal Cord Injury

期刊

CELLS
卷 11, 期 15, 页码 -

出版社

MDPI
DOI: 10.3390/cells11152320

关键词

spinal cord injury; single cell RNA-seq; axon regeneration; MAPK pathway; circadian rhythm; local protein synthesis

资金

  1. Shriners Hospitals for Children Grants [SHC-85101, SHC-85400, SHC-85220]
  2. NIH [NS097846, NS092876]

向作者/读者索取更多资源

Axotomy in the CNS can lead to either axon regeneration or cell death depending on retrograde signals. Local protein synthesis in axon tips plays a crucial role in axon retraction and regeneration. Single-cell RNA-seq analysis reveals that differentially regulated MAPK and circadian rhythm signaling pathways may be involved in activating different programs for axon regeneration or retraction and apoptosis.
Axotomy in the CNS activates retrograde signals that can trigger regeneration or cell death. Whether these outcomes use different injury signals is not known. Local protein synthesis in axon tips plays an important role in axon retraction and regeneration. Microarray and RNA-seq studies on cultured mammalian embryonic or early postnatal peripheral neurons showed that axon growth cones contain hundreds to thousands of mRNAs. In the lamprey, identified reticulospinal neurons vary in the probability that their axons will regenerate after axotomy. The bad regenerators undergo early severe axon retraction and very delayed apoptosis. We micro-aspirated axoplasms from 10 growing, 9 static and 5 retracting axon tips of spinal cord transected lampreys and performed single-cell RNA-seq, analyzing the results bioinformatically. Genes were identified that were upregulated selectively in growing (n = 38), static (20) or retracting tips (18). Among them, map3k2, csnk1e and gtf2h were expressed in growing tips, mapk8(1) was expressed in static tips and prkcq was expressed in retracting tips. Venn diagrams revealed more than 40 components of MAPK signaling pathways, including jnk and p38 isoforms, which were differentially distributed in growing, static and/or retracting tips. Real-time q-PCR and immunohistochemistry verified the colocalization of map3k2 and csnk1e in growing axon tips. Thus, differentially regulated MAPK and circadian rhythm signaling pathways may be involved in activating either programs for axon regeneration or axon retraction and apoptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据