4.6 Review

Inhibitor of Growth Factors Regulate Cellular Senescence

期刊

CANCERS
卷 14, 期 13, 页码 -

出版社

MDPI
DOI: 10.3390/cancers14133107

关键词

ING1; ING2; ING3; ING4; ING5; cellular senescence; cancer; tumor suppressor; oncoprotein; inhibitor of growth

类别

向作者/读者索取更多资源

Members of the ING family, with their conserved plant homeodomain, play a role in regulating histone modifications and cellular senescence. Different ING members are associated with specific histone modifications and can induce cellular senescence in both normal and cancer cells. This review provides an overview of the current knowledge about the regulatory activity of ING proteins in cellular senescence.
Simple Summary Five members of the Inhibitor of Growth (ING) family share a highly conserved plant homeodomian with affinity to the specific histone modification H3K4me3. Since some ING family members are preferentially associated with histone acetyltransferaseactivity while other members with histone deacetlyse activity, the ING family membres are epigenetic regulators. Interestingly, ING members can regulate the induction cellular senescence in both primray untransformed human cells as well as human cancer cells. We discuss here the up-to-date knowledge about their regulatory activity within the cellular senescent program. The Inhibitor of Growth (ING) proteins are a group of tumor suppressors with five conserved genes. A common motif of ING factors is the conserved plant homeodomain (PHD), with which they bind to chromatin as readers of the histone mark trimethylated histone H3 (H3K4me3). These genes often produce several protein products through alternative splicing events. Interestingly, ING1 and ING2 participate in the establishment of the repressive mSIN3a-HDAC complexes, whereas ING3, ING4, and ING5 are associated with the activating HAT protein complexes. In addition to the modulation of chromatin's structure, they regulate cell cycle transition, cellular senescence, repair of DNA damage, apoptosis, and angiogenic pathways. They also have fundamental effects on regulating cellular senescence in cancer cells. In the current review, we explain their role in cellular senescence based on the evidence obtained from cell line and animal studies, particularly in the context of cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据