4.7 Article

Natural mutation in the regulatory gene (srrG) influences virulence-associated genes and enhances invasiveness in Streptococcus dysgalactiae subsp. equisimilis strains isolated from cases of streptococcal toxic shock syndrome

期刊

EBIOMEDICINE
卷 81, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ebiom.2022.104133

关键词

Streptococcus dysgalactiae subspecies equisimilis; Streptococcus toxic shock syndrome; Mutation; Invasive infections; Bacterial infection

资金

  1. Japan Agency for Medical Research and Development
  2. Japan Society for the Promotion of Science (JSPS)
  3. Ministry of Health, Labor, and Welfare of Japan

向作者/读者索取更多资源

This study identified csrS/csrR and srrG gene mutations that are associated with increased virulence gene expression in STSS-SDSE isolates. Strains carrying these mutations exhibited enhanced pathogenicity in mice. The higher frequency of mutations observed in STSS-SDSE isolates highlights their importance in STSS.
Background Streptococcus dysgalactiae subspecies equisimilis (SDSE) has emerged as an important cause of severe invasive infections including streptococcal toxic shock syndrome (STSS). The present study aimed to identify genes involved in differences in invasiveness between STSS and non-invasive SDSE isolates. Methods STSS and non-invasive SDSE isolates were analysed to identify csrS/csrR mutations, followed by a comparative analysis of genomic sequences to identify mutations in other genes. Mutant strains were generated to examine changes in gene expression profiles and altered pathogenicity in mice. Findings Of the 79 STSS-SDSE clinical isolates, 15 (19.0%) harboured csrS/csrR mutations, while none were found in the non-invasive SDSE isolates. We identified a small RNA (sRNA) that comprised three direct repeats along with an inverted repeat and was transcribed in the same direction as the sagA gene. The sRNA was referred to as srrG (streptolysin S regulatory RNA in GGS). srrG mutations were identified in the STSS-SDSE strains and were found to be associated with elevated expression of the streptolysin S (SLS) gene cluster and enhanced pathogenicity in mice. Interpretation The csrS/csrR and srrG mutations that increased virulence gene expression in STSS-SDSE isolates were identified, and strains carrying these mutations caused increased lethality in mice. A significantly higher frequency of mutations was observed in STSS-SDSE isolates, thereby highlighting their importance in STSS. Copyright (C) 2022 The Author(s). Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据