4.6 Article

Rigorous Evaluation of Liquid Products in High-Rate CO2/CO Electrolysis

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Multidisciplinary Sciences

Efficient CO2 electroreduction on facet-selective copper films with high conversion rate

Gong Zhang et al.

Summary: The authors developed a novel synthetic approach to prepare Cu(100)-rich thin film electrodes for CO2 electroreduction, achieving high Faradaic efficiency for ethylene and C2+ products. Scaling up the electrode led to increased total current and higher yield of desired C2+ products. Insights into Cu facets exposure effects on intermediates were provided through in situ spectroscopic methods and theoretical calculations, enabling precise design of CO2 reduction reactions for future industrial applications.

NATURE COMMUNICATIONS (2021)

Article Multidisciplinary Sciences

CO2 electrolysis to multicarbon products in strong acid

Jianan Erick Huang et al.

Summary: Carbon dioxide electroreduction (CO2R) is being actively studied as a promising route to convert carbon emissions to valuable chemicals and fuels. A study found that concentrating potassium cations in the vicinity of electrochemically active sites accelerates CO2 activation to enable efficient CO2R in acid. The research achieved a high CO2R efficiency on copper at pH <1 with a single-pass CO2 utilization of 77%.

SCIENCE (2021)

Review Chemistry, Multidisciplinary

Recent advances in innovative strategies for the CO2 electroreduction reaction

Xinyi Tan et al.

Summary: The CO2RR system faces limitations in practical applications due to low current density, poor CO2 utilization, and energy efficiency. To improve its performance, systematic consideration and optimization of each component are necessary. This review focuses on innovative design strategies for tandem catalysts, electrolytes, electrodes, and devices, as well as discussions on opportunities and challenges for future advancements in the CO2RR system.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

A Comprehensive Approach to Investigate CO2 Reduction Electrocatalysts at High Current Densities

Gaston O. Larrazabal et al.

Summary: As electrochemical CO2 reduction studies progress towards higher current densities, the system becomes more complex, requiring rigorous scientific analysis, mass transfer optimizations, and comprehensive parameter monitoring to accurately assess performance.

ACCOUNTS OF MATERIALS RESEARCH (2021)

Review Chemistry, Multidisciplinary

Designing CO2 reduction electrode materials by morphology and interface engineering

Fuping Pan et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs

Ming Ma et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Review Chemistry, Multidisciplinary

CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions

Thomas Burdyny et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Physical

Modeling gas-diffusion electrodes for CO2 reduction

Lien-Chun Weng et al.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2018)

Article Chemistry, Multidisciplinary

Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO2

Michael B. Ross et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Review Multidisciplinary Sciences

Combining theory and experiment in electrocatalysis: Insights into materials design

Zhi Wei Seh et al.

SCIENCE (2017)

Article Chemistry, Physical

Selective Electroreduction of CO2 toward Ethylene on Nano Dendritic Copper Catalysts at High Current Density

Christian Reller et al.

ADVANCED ENERGY MATERIALS (2017)

Article Chemistry, Multidisciplinary

Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays

Ming Ma et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Article Electrochemistry

Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes

D. Kopljar et al.

JOURNAL OF APPLIED ELECTROCHEMISTRY (2014)

Article Electrochemistry

Operation of a Pressurized System for Continuous Reduction of CO2

Eric J. Dufek et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2012)

Article Chemistry, Physical

Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction

Devin T. Whipple et al.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2010)

Article Chemistry, Multidisciplinary

The hydration number of Li+ in liquid water

SB Rempe et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2000)