4.7 Article

White matter fiber-specific degeneration in older adults with metabolic syndrome

期刊

MOLECULAR METABOLISM
卷 62, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molmet.2022.101527

关键词

Diffusion MRI; Executive-motor dysfunction; Fixel-based analysis; Metabolic syndrome; Neurodegeneration; White matter

资金

  1. Juntendo Research Branding Project
  2. Japan Society for the Promotion of Science (JSPS) [JP21K07690, 20F20113, JP18H02772, 19K17244]
  3. Promotion and Mutual Aid Corporation for Private Schools of Japan
  4. Brain/MINDS Beyond program of the Japan Agency for Medical Research and Development [JP19dm0307101]

向作者/读者索取更多资源

This study used fixel-based analysis to assess the impact of Metabolic syndrome (MetS) on white matter microstructure in older adults, and found significant correlations with cognitive and locomotor functions. The results showed substantial axonal loss in individuals with MetS and early axonal loss without fiberbundle morphological changes in those with preMetS. The study also revealed associations between executive dysfunction, abdominal obesity, hyper-low-density lipoprotein cholesterolemia, smoking habit, and compromised WM neural tissue microstructure in MetS.
Objective: Metabolic syndrome (MetS) is defined as a complex of interrelated risk factors for type 2 diabetes and cardiovascular disease, including glucose intolerance, abdominal obesity, hypertension, and dyslipidemia. Studies using diffusion tensor imaging (DTI) have reported white matter (WM) microstructural abnormalities in MetS. However, interpretation of DTI metrics is limited primarily due to the challenges of modeling complex WM structures. The present study used fixel-based analysis (FBA) to assess the effect of MetS on the fiber tract-specific WM microstructure in older adults and its relationship with MetS-related measurements and cognitive and locomotor functions to better understand the pathophysiology of MetS.Methods: Fixel-based metrics, including microstructural fiber density (FD), macrostructural fiber-bundle cross-section (FC), and a combination of FD and FC (FDC), were evaluated in 16 healthy controls (no components of MetS; four men; mean age, 71.31 +/- 5.06 years), 57 individuals with premetabolic syndrome (preMetS; one or two components of MetS; 29 men; mean age, 72.44 +/- 5.82 years), and 46 individuals with MetS (three to five components of MetS; 27 men; mean age, 72.15 +/- 4.97 years) using whole-brain exploratory FBA. Tract of interest (TOI) analysis was then performed using TractSeg across 14 selected WM tracts previously associated with MetS. The associations between fixel-based metrics and MetS-related measurements, neuropsychological, and locomotor function tests were also analyzed in individuals with preMetS and MetS combined. In addition, tensor-based metrics (i.e., fractional anisotropy [FA] and mean diffusivity [MD]) were compared among the groups usingResults: In whole-brain FBA, individuals with MetS showed significantly lower FD, FC, and FDC compared with healthy controls in WM areas, such as the splenium of the corpus callosum (CC), corticospinal tract (CST), middle cerebellar peduncle (MCP), and superior cerebellar peduncle (SCP). Meanwhile, in fixel-based TOI, significantly reduced FD was observed in individuals with preMetS and MetS in the anterior thalamic radiation, CST, SCP, and splenium of the CC compared with healthy controls, with relatively greater effect sizes observed in individuals with MetS. Compared with healthy controls, significantly reduced FC and FDC were only demonstrated in individuals with MetS, including regions with loss of FD, inferior cerebellar peduncle, inferior fronto-occipital fasciculus, MCP, and superior longitudinal fasciculus part I. Furthermore, negative correlations were observed between FD and Brinkman index of cigarette consumption cumulative amount and between FC or FDC and the Trail Making Test (parts BeA), which is a measure of executive function, waist circumference, or low-density lipoprotein cholesterol. Finally, TBSS analysis revealed that FA and MD were not significantly different among all groups.Conclusions: The FBA results demonstrate that substantial axonal loss and atrophy in individuals with MetS and early axonal loss without fiberbundle morphological changes in those with preMetS within the WM tracts are crucial to cognitive and motor function. FBA also clarified the association between executive dysfunction, abdominal obesity, hyper-low-density lipoprotein cholesterolemia, smoking habit, and compromised WM neural tissue microstructure in MetS.(c) 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据