4.7 Article

Life cycle assessment of carbon capture and utilization from ammonia process in Mexico

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 183, 期 -, 页码 998-1008

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2016.09.048

关键词

Ammonia process; Carbon capture and utilization (CCU); Enhanced oil recovery; Global warming; Life cycle assessment; Process simulation

向作者/读者索取更多资源

Post-combustion CO2 capture (PCC) of flue gas from an ammonia plant (AP) and the environmental performance of the carbon capture utilization (CCU) technology for greenhouse gas (GHG) emissions to an enhanced oil recovery (EOR) system in Mexico was performed as case study. The process simulations (PS) and life cycle assessment (LCA) were used as supporting tools to quantify the CO2 capture and their environmental impacts, respectively. Two scenarios were considered: 1) the AP with its shift and CO2 removal unit and 2) Scenario 1 plus PCC of the flue gas from the AP primary reformer (AP-2CO(2)) and the global warming (GW) impact. Also, the GW of the whole of a CO2-EOR project, from these two streams of captured CO2, was evaluated. Results show that 372,426 tCO(2)/year can be PCC from the flue gas of the primary reformer and 480,000 tons/y of capacity from the AP. The energy requirement for solvent regeneration is estimated to be 2.8 MJ/kgCO(2) or a GW impact of 0.22 kgCO(2e)/kgCO(2) captured. GW performances are 297.6 kgCO(2e) emitted/barrel (bbl) for scenario one, and 106.5 kgCO(2e) emitted/bbl for the second. The net emissions, in scenario one, were 0.52 tCO(2e)/bbl and 0.33 tCO(2),/bbl in scenario two. Based on PS, this study could be used to evaluate the potential of CO2 capture of 4080 t/d of 4 ammonia plants. The integration of PS-LCA to a PCC study allows the applicability as methodological framework for the development of a cluster of projects in which of CO2 could be recycled back to fuel, chemical, petrochemical products or for enhanced oil recovery (EOR). With AP-2CO(2), CO2 emission free ammonia production could be achieved. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据