4.6 Article

Investigation of Gentamicin Release from Polydopamine Nanoparticles

期刊

APPLIED SCIENCES-BASEL
卷 12, 期 13, 页码 -

出版社

MDPI
DOI: 10.3390/app12136319

关键词

polydopamine; drug delivery; gentamicin; drug release kinetics; kinetic models

向作者/读者索取更多资源

This study investigates the drug loading and release behavior of gentamicin loaded into polydopamine nanoparticles. The release kinetics of gentamicin is found to be influenced by the pH and surface charge of the nanoparticles. The findings suggest that the in situ loading method using polydopamine nanoparticles can provide sustained drug release over a period of seven days.
Polydopamine (PDA), being highly reactive in nature, has acquired great attention in multi-disciplinary fields. Owing to its fascinating properties, including its biocompatible, non-toxic and readily bio-degradative nature, we investigated the drug loading and release behavior, using an aminoglycoside antibiotic gentamicin (G) as a model drug. The gentamicin was loaded into the PDA nanoparticles (NPs) via an in situ polymerization method. The release kinetics of the gentamicin was then studied in pH 3, 5 and 7.4. Two batches with varied gentamicin loadings, G-PDA NPs 1:1 (with approx. 84.1% loaded gentamicin) and G-PDA NPs 0.6:1 (with approx. 72.7% loaded gentamicin), were studied. The drug release data were analyzed by LC-MS. The PDA showed good stability in terms of gentamicin release at alkaline pH over a period of seven days. The negative surface charge of PDA at pH 7.4 makes a strong bond with gentamicin, hence preventing its release from the PDA NPs. However, at pH 5 and 3, the amine groups of PDA are more prone towards protonation, making PDA positively charged, hence the repulsive forces caused the gentamicin to detach and release from the G-PDA NPs. Consequently, approx. 40% and 55% drug release were observed at pH 5 and 3, respectively, from the G-PDA NPs 1:1. However, the drug released from G-PDA NPs 0.6:1 was found to be one half as compared to the G-PDA NPs 1:1, which is obvious to the concentration gradient. These findings suggested that the in situ loading method for gentamicin could provide drug release over a period of seven days, hence defending the drug's efficacy and safety challenges. Furthermore, two kinetic models, namely the Ritger-Peppas and Higuchi models, were implemented to determine the drug release kinetics. Curve fitting analysis supported our findings for the drug release kinetics which are followed by PDA structural changes in response to pH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据