4.8 Review

Electrolyte Solvation Structure Design for Sodium Ion Batteries

期刊

ADVANCED SCIENCE
卷 9, 期 22, 页码 -

出版社

WILEY
DOI: 10.1002/advs.202201207

关键词

electrolytes; sodium ion batteries; solvation structure

资金

  1. King Abdullah University of Science and Technology (KAUST) [OSR-CRG2017-3379]

向作者/读者索取更多资源

This article provides a systematic survey of the solvation structure of electrolytes in sodium ion batteries (SIBs) and elucidates their impact on electrochemical performance. The key driving forces of solvation structure formation and recent advances in adjusting SIB solvation structures are discussed in detail. This review is believed to provide new insights into electrolyte optimization strategies for high-performance SIBs and other emerging battery systems.
Sodium ion batteries (SIBs) are considered the most promising battery technology in the post-lithium era due to the abundant sodium reserves. In the past two decades, exploring new electrolytes for SIBs has generally relied on the solid electrolyte interphase (SEI) theory to optimize the electrolyte components. However, many observed phenomena cannot be fully explained by the SEI theory. Therefore, electrolyte solvation structure and electrode-electrolyte interface behavior have recently received tremendous research interest to explain the improved performance. Considering there is currently no review paper focusing on the solvation structure of electrolytes in SIBs, a systematic survey on SIBs is provided, in which the specific solvation structure design guidelines and their consequent impact on the electrochemical performance are elucidated. The key driving force of solvation structure formation, and the recent advances in adjusting SIB solvation structures are discussed in detail. It is believed that this review can provide new insights into the electrolyte optimization strategies of high-performance SIBs and even other emerging battery systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据