4.6 Article

Maize-peanut rotational strip intercropping improves peanut growth and soil properties by optimizing microbial community diversity

期刊

PEERJ
卷 10, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj.13777

关键词

Rotational strip intercropping (RSI); Yield; Rhizosphere soil; Soil physical properties; Enzyme activities; 16S; ITS

资金

  1. Joint Funds of the National Natural Science Foundation of China [U21A20217]

向作者/读者索取更多资源

Rotational strip intercropping can improve the growth and yield of peanuts, and promote plant growth by increasing soil nutrients and improving soil enzyme activity. Compared with continuous cropping, rotational strip intercropping can reduce continuous cropping obstacles and improve field use efficiency.
Rotational strip intercropping (RSI) of cereals and legumes has been developed and widely carried out to alleviate continuous cropping obstacles, to control erosion and to improve field use efficiency. In this study, a four-year fixed-field experiment was carried out in northeast China with three treatments: continuous cropping of maize, continuous cropping of peanuts and rotational strip intercropping of maize and peanut. The results show that crop rotation improved the main-stem height, branch number, lateral branch length, and yield and quality of peanuts; the yield was the highest in 2018, when it was increased by 39.5%. RSI improved the contents of total N, available N, total P, available P, total K and available K; the content of available N was the highest in 2018, with an increase of 70%. Rhizosphere soil urease and catalase activities were significantly increased and were the highest in 2017, reaching 183.13% and 91.21%, respectively. According to a high-throughput sequencing analysis, the rhizosphere soil bacterial richness and specific OTUs decreased in peanut rhizosphere soil, while the fungal increased. There were differences in the bacterial and fungal community structures; specifically, the abundance of Acidobacteria and Planctomycetes increased among bacteria and the abundance of beneficial microorganisms such as Ascomycota increased among fungi. In conclusion, rotational strip intercropping of maize and peanut increased the yield and quality of peanuts and conducive to alleviating the obstacles facing the continuous cropping of peanuts. Among then, soil physicochemical properties, enzyme activity and microbial diversity were significantly affected the yield of peanut.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据