4.7 Article

Magnetic Dipole and Thermophoretic Particle Deposition Impact on Bioconvective Oldroyd-B Fluid Flow over a Stretching Surface with Cattaneo-Christov Heat Flux

期刊

NANOMATERIALS
卷 12, 期 13, 页码 -

出版社

MDPI
DOI: 10.3390/nano12132181

关键词

magnetic dipole; gyrotactic microorganism; thermophoretic particle deposition; bioconvection; Cattaneo-Christov heat flux

资金

  1. King Khalid University, Saudi Arabia [RGP 2/26/43]

向作者/读者索取更多资源

This study focuses on the performance of two-dimensional electrically non-conducting Oldroyd-B fluid flowing across a stretching sheet with thermophoretic particle deposition. The effects of magnetic and chemical reactions on heat and mass transfer are considered. The results show that the rate of heat transfer decreases with increasing thermal relaxation time and the velocity of thermophoretic deposition decreases with increasing thermophoretic coefficient.
This study emphasizes the performance of two-dimensional electrically non-conducting Oldroyd-B fluid flowing across a stretching sheet with thermophoretic particle deposition. The heat and mass transfer mechanisms are elaborated in the presence of a magnetic dipole, which acts as an external magnetic field. The fluid possesses magnetic characteristics due to the presence of ferrite particles. The gyrotactic microorganisms are considered to keep the suspended ferromagnetic particles stable. Cattaneo-Christov heat flux is cogitated instead of the conventional Fourier law. Further, to strengthen the heat transfer and mass transfer processes, thermal stratification and chemical reaction are employed. Appropriate similarity transformations are applied to convert highly nonlinear coupled partial differential equations into non-linear ordinary differential equations (ODEs). To numerically solve these ODEs, an excellent MATLAB bvp4c approach is used. The physical behavior of important parameters and their graphical representations are thoroughly examined. The tables are presented to address the thermophoretic particle velocity deposition, rate of heat flux, and motile microorganisms' density number. The results show that the rate of heat transfer decreases as the value of the thermal relaxation time parameter surges. Furthermore, when the thermophoretic coefficient increases, the velocity of thermophoretic deposition decreases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据