4.3 Article

Finite Element Analysis of the Effects of Thermally Grown Oxide Thickness and Interface Asperity on the Cracking Behavior Between the Thermally Grown Oxide and the Bond Coat

出版社

ASME
DOI: 10.1115/1.4034259

关键词

thermally grown oxide; interface asperity; interfacial crack; cohesive zone model

向作者/读者索取更多资源

Finite element simulations based on an interface cohesive zone model (CZM) have been developed to mimic the interfacial cracking behavior between the alpha - Al2O3 thermally grown oxide (TGO) and the aluminum-rich Pt-Al metallic bond coat (BC) during cooling from high temperature to ambient temperature. A two-dimensional half-periodic sinusoidal geometry corresponding to interface undulation is modeled. The effects of TGO thickness and interface asperity on the stress distribution and the cracking behavior are examined by parametric studies. The simulation results show that cracking behavior due to residual stress and interface asperity during cooling process leads to stress redistribution around the rough interface. The TGO thickness has strong influence on the maximum tensile stress of TGO and the interfacial crack development. For the sinusoidal asperities, there exists a critical amplitude above which the interfacial cracking is energetically favored. For any specific TGO thickness, crack initiation is dominated by the amplitude while crack propagation is restricted to the combine actions of the wavelength and the amplitude of the sinusoidal asperity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据