4.7 Article

Reduction of carbon dioxide to dimethylformamide using ruthenium doped Mg/Al hydrotalcites under supercritical conditions

期刊

JOURNAL OF CO2 UTILIZATION
卷 61, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jcou.2022.102055

关键词

Hydrotalcite; Supercritical carbon dioxide; Hydrogenation; Dimethylformamide; Langmuir-Hinshelwood-Hougen-Watson model

资金

  1. Council of Scientific and Industrial Research (CSIR) , Delhi, India

向作者/读者索取更多资源

This article reports the synthesis of dime-thylformamide (DMF) using ruthenium doped Mg/Al calcined hydrotalcite by CO2 hydrogenation in the presence of dimethylamine (DMA). The optimized conditions achieved complete conversion of dimethylamine with a yield of more than 92%. The catalyst properties, surface morphology, and kinetic modeling were thoroughly investigated.
The utilization of carbon dioxide is one of the developing areas due to its significant contribution to global warming. Reducing carbon dioxide (CO2) to formic acid and its derivatives has gained importance because of its thermodynamic limitations and high industrial demand. In this article, we report the synthesis of dime-thylformamide (DMF) using ruthenium doped Mg/Al calcined hydrotalcite by CO2 hydrogenation in the presence of dimethylamine (DMA). At optimized conditions, complete conversion of dimethylamine was achieved with more than 92% product yield at 170 degrees C and 13 MPa pressure with a reaction time of 6 h. Key catalyst properties were determined using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), CO2-temper-ature programmed desorption (TPD), H-2 temperature-programmed reduction (TPR) and Fourier transform infrared (FTIR). The determination of surface morphology was carried out using field emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). At the same time, the chemical composition was verified by energy-dispersive X-ray (EDS). In addition, kinetic modeling is performed using the two site Langmuir-Hinshelwood-Hougen-Watson model. The regressed kinetic parameters gave an appropriate fit with experimental concentration values and activation energy is calculated as 413 kJ/mol K-1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据