4.4 Article

Application of Artificial Neural Network-Particle Swarm Optimization Algorithm for Prediction of Gas Condensate Dew Point Pressure and Comparison With Gaussian Processes Regression-Particle Swarm Optimization Algorithm

出版社

ASME
DOI: 10.1115/1.4032226

关键词

dew point pressure; gas condensate; particle swarm optimization; evolutionary Gaussian processes regression

向作者/读者索取更多资源

For gas condensate reservoirs, as the reservoir pressure drops below the dew point pressure (DPP), a large amount of valuable condensate drops out and remains in the reservoir. Thus, prediction of accurate values for DPP is important and leads to successful development of gas condensate reservoirs. There are some experimental methods such as constant composition expansion (CCE) and constant volume depletion (CVD) for DPP measurement but difficulties in experimental measurement especially for lean retrograde gas condensate causes to develop of different empirical correlations and equations of state for DPP calculation. Equations of state and empirical correlations are developed for special and limited data sets and for unseen data sets they are not generalizable. To mitigate this problem, in this paper we developed new artificial neural network optimized by particle swarm optimization (ANN-PSO) for DPP prediction. Reservoir fluid composition, temperature and characteristics of the C7+ considered as input parameters to neural network and DPP as target parameter. Comparing results of the developed model in this research with Gaussian processes regression by particle swarm optimization (GPR-PSO), previous models and correlations shows that the predictive model is accurate and is generalizable to new unseen data sets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据