4.6 Article

Altered Regional Brain Glucose Metabolism in Diffuse Large B-Cell Lymphoma Patients Treated With Cyclophosphamide, Epirubicin, Vincristine, and Prednisone: An Fluorodeoxyglucose Positron Emission Tomography Study of 205 Cases

期刊

FRONTIERS IN NEUROSCIENCE
卷 16, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnins.2022.914556

关键词

F-18-FDG; PET; brain glucose metabolism; chemotherapy; diffuse large B cell lymphoma

资金

  1. talents program of Jiangsu Cancer Hospital [YC201801]

向作者/读者索取更多资源

This study investigated the differences in regional brain glucose metabolism between DLBCL patients treated with chemotherapy and controls using PET/CT scanning. The results showed that DLBCL patients had altered glucose metabolism in certain brain regions compared to controls. These findings improve our understanding of the impact of chemotherapy on brain function in DLBCL patients.
BackgroundA growing number of neuroimaging studies reported that chemotherapy might impair brain functions, leading to persistent cognitive alterations in a subset of cancer patients. The present study aimed to investigate the regional brain glucose metabolism differences between diffuse large B cell lymphoma (DLBCL) patients treated with cyclophosphamide, epirubicin, vincristine, and prednisone and controls using positron emission tomography with F-18-labeled fluoro-2-deoxyglucose integrated with computed tomography (F-18-FDG PET/CT) scanning. MethodsWe analyzed F-18-FDG PET data from 205 right-handed subjects (for avoiding the influence of handedness factors on brain function), including 105 post-chemotherapy DLBCL patients and 100 controls. The two groups had similar average age, gender ratio, and years of education. First, we compared the regional brain glucose metabolism using a voxel-based two-sample t-test. Second, we compared the interregional correlation. Finally, we investigated the correlations between the regional brain glucose metabolism and the number of chemotherapy cycles. ResultsCompared with the controls, the post-chemotherapy group showed higher metabolism in the right hippocampus and parahippocampal gyrus (region of interest (ROI) 1) and the left hippocampus (ROI 2), and lower metabolism in the left medial orbitofrontal gyrus (ROI 3), the left medial superior frontal gyrus (ROI 4), and the left superior frontal gyrus (ROI 5). The two groups had different interregional correlations between ROI 3 and ROI 5. In some brain regions-mainly located in the bilateral frontal gyrus-the number of chemotherapy cycles was positively correlated with the regional brain glucose metabolism. Meanwhile, in some bilateral hippocampus regions, these two parameters were negatively correlated. ConclusionThe present study provides solid data on the regional brain glucose metabolism differences between post-chemotherapy DLBCL patients and controls. These results should improve our understanding of human brain functions alterations in post-chemotherapy DLBCL patients and suggest that F-18-FDG PET/CT scanning is a valuable neuroimaging technology for studying chemotherapy-induced brain function changes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据