4.3 Article

Modes of Ignition of Powder Layers of Nanocomposite Thermites by Electrostatic Discharge

期刊

JOURNAL OF ENERGETIC MATERIALS
卷 35, 期 1, 页码 29-43

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07370652.2016.1150366

关键词

Energetic materials; heterogeneous combustion; metal combustion; reactive materials

资金

  1. U.S. Army Research Office (ARO)

向作者/读者索取更多资源

Nanocomposite powders with aluminum as a fuel and oxides of molybdenum, copper, bismuth, and iron as oxidizers were prepared by arrested reactive milling. The powders were placed in 0.5-mm-thick layers and ignited by electrostatic discharge (ESD) in air. In different tests, timeresolved light emission was recorded at 568 nm or in the range of 373-641 nm. The amount of material consumed was recorded as well. Time-resolved temperatures were determined. Two distinct ignition regimes were observed. Prompt ignition occurred within 10 mu s of the electric discharge, comparable to what had previously been observed for corresponding powder monolayers. This ignition mode was observed for composites with Bi2O3 and Fe2O3 ignited with a 12-kV discharge, whereas it only occurred at higher spark voltage (20 kV) and energy for CuO and MoO3 composites. Delayed ignition, occurring after 0. 1-1 ms following the discharge, was observed for all composites with consistently stronger light emission. Analysis of quenched, partially burned particles showed that the original nanostructure was preserved after prompt ignition but not after delayed ignition. It is proposed that prompt ignition represents direct ESD initiation of composite particles rapidly and adiabatically preheated to high temperatures while keeping the nanostructure intact, resulting in a heterogeneous reaction consuming most of the aluminum. Delayed ignition occurs when particles preheated to lower temperatures start oxidizing at much lower rates, leading to cloud combustion, in which thermal interaction between individual aerosolized burning particles is substantial. During this process, the nanostructure may be lost. Temperature measurements show that nanocomposites with CuO and MoO3 burned superadiabatically with flame temperatures exceeding thermodynamic predictions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据