4.6 Article

Insights into the Design of An Enzyme Free Sustainable Sensing Platform for Efavirenz

期刊

CATALYSTS
卷 12, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/catal12080830

关键词

electrocatalysis; efavirenz; nafion; TiO2-NPs; density functional theory; Monte Carlo

资金

  1. Durban University of Technology (DUT) [KB-RFA-2022]
  2. Mangosuthu University of Technology [MAJ-2022]

向作者/读者索取更多资源

A new hybrid sensor was developed using titanium oxide nanoparticles and nafion as an anchor agent on a glassy carbon electrode for efavirenz detection. The sensor demonstrated good selectivity and practicality, with excellent recovery rates for the drug.
In this study, a new hybrid sensor was developed using titanium oxide nanoparticles (TiO2-NPs) and nafion as an anchor agent on a glassy carbon electrode (GCE/TiO2-NPs-nafion) to detect efavirenz (EFV), an anti-HIV medication. TiO2-NPs was synthesized using Eucalyptus globulus leaf extract and characterized using ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS). The electrochemical and sensing properties of the developed sensor for EFV were assessed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The current response of GCE/TiO2-NPs-nafion electrode towards the oxidation of EFV was greater compared to the bare GCE and GCE/TiO2-NPs electrodes. A linear dynamic range of 4.5 to 18.7 mu M with 0.01 mu M limit of detection was recorded on the electrode using differential pulse voltammetry (DPV). The electrochemical sensor demonstrated good selectivity and practicality for detecting EFV in pharmaceuticals (EFV drugs) with excellent recovery rates, ranging from 92.0-103.9%. The reactive sites of EFV have been analyzed using quantum chemical calculations based on density functional theory (DFT). Monte Carlo (MC) simulations revealed a strong electrostatic interaction on the substrate-adsorbate (GCE/TiO2-NPs-nafion-EFV) system. Results show good agreement between the MC computed adsorption energies and the experimental CV results for EFV. The stronger adsorption energy of nafion onto the GCE/TiO2-NPs substrate contributed to the catalytic role in the signal amplification for sensing of EFV. Our results provide an effective way to explore the design of new 2D materials for sensing of EFV, which is highly significant in medicinal and materials chemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据