4.6 Review

The CREC Fluidized Riser Simulator a Unique Tool for Catalytic Process Development

期刊

CATALYSTS
卷 12, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/catal12080888

关键词

catalytic laboratory reactors; CREC Riser Simulator; fluidized beds

资金

  1. Natural Science and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

The CREC Riser Simulator is a mini-fluidized bench scale unit that allows the evaluation of catalyst performance and catalytic reaction kinetics. It has been widely used in universities and companies globally and is capable of developing simulations for various scenarios in fluidized bed catalytic and heterogeneous reactors.
The CREC Riser Simulator is a mini-fluidized bench scale unit invented and implemented in 1992, at the CREC (Chemical Reactor Engineering Centre), University of Western Ontario The CREC Riser Simulator can be operated at short reaction times, in the 3 s to 20 s range. The present review describes and evaluates the original basic concept of the 1992-CREC Riser Simulator Unit, and the improved design of the 2019-CREC Riser Simulator. Both the initial and the enhanced units are specially engineered to allow the rigorous assessment of both catalyst performance and catalytic reaction kinetics. Kinetic parameters of relatively simple and accurate mathematical models can be calculated using experimental data from the CREC Riser Simulator. Since its inception in 1992, the CREC Riser Simulator has been licensed to and manufactured for a significant number of universities and companies around the world. Several examples of scenarios where the CREC Riser Simulator can be employed to develop fluidized bed catalytic and heterogeneous reactor simulations are reported in this review. Among others, they include (a) hydrocarbon catalytic cracking, (b) the catalytic conversion of tar derived biomass chemical species, (c) steam and dry catalytic methane reforming, (d) the catalytic oxydehydrogenation of light paraffins, (e) the catalytic desulfurization of gasoline, and (f) biomass derived syngas combustion via chemical looping. In this review, special emphasis is given to the application of the CREC Riser Simulator to TIPB (tri-iso-propyl-benzene) catalytic cracking and the light paraffins catalytic oxydehydrogenation (PODH).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据