4.6 Article

Photonic-Structured Perovskite Solar Cells: Detailed Optoelectronic Analysis

期刊

ACS PHOTONICS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsphotonics.2c00446

关键词

photovoltaics; photonics; perovskite solar cells; coupled optical and electrical modeling

资金

  1. European Commission
  2. DFG (German Research Foundation)
  3. FCT I.P. (Portuguese Research Foundation)

向作者/读者索取更多资源

Recent experimental advances in perovskite solar cell technology have brought about a new era in low-cost, flexible, and high-efficiency photovoltaics. However, the study of the detailed physical mechanisms governing the optoelectronic properties of these solar cells has not kept pace with experimental breakthroughs. This article aims to bridge this gap by using a coupled optical and electrical modeling approach to optimize and assess the transport properties of photonic-structured perovskite solar cells. The findings show that ultrathin perovskite absorbers can significantly enhance light coupling and photocurrent generation, leading to increased short circuit current, open-circuit voltage, fill factor, and power conversion efficiency.
Recent experimental advances in perovskite solar cell (PSC) technology marked a new era for low-cost, flexible, and high-efficiency photovoltaics (PVs). In contrast, the study of the detailed physical mechanisms governing the optoelectronic properties of PSCs has not been keeping up with these breakthroughs, which have been eclipsing theoretical efforts aimed at a more indepth understanding of this emerging PV technology. Consequently, this has been hindering the design of the devices from reaching their maximum potential. The present article aims to bridge this gap by using a coupled optical and electrical modeling approach to optimize and rigorously assess the transport properties of selected photonic-structured PSC architectures, with particular attention given to ultrathin (300 nm) perovskite absorbers as they can pronouncedly benefit from the light-trapping effects provided by micro-structuring. The central finding of this study is that photonic-structured ultrathin PSCs benefit from significantly enhanced light in coupling and subsequent photocurrent generation in the absorber layer. This leads to more than 20% increase in the short circuit current in comparison with planar devices. In addition, slight increases in the open-circuit voltage and fill factor can be obtained due to the ultrathin perovskite absorbers, and thus, power conversion efficiencies approaching 30% are possible. Moreover, it was also found that the electrical simulations of complex 3D device geometries can be accurately simplified to 1D, massively benefiting the computational efficiency of these studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据