4.7 Article

A Delay Compensation Framework for Connected Testbeds

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMC.2021.3091974

关键词

Delays; Predictive models; Predictive control; Data models; Thermal stability; Networked control systems; Adaptation models; Connected testbeds; delay compensation; model-free prediction; networked systems

资金

  1. National Science Foundation [1646019]
  2. Division Of Computer and Network Systems
  3. Direct For Computer & Info Scie & Enginr [1646019] Funding Source: National Science Foundation

向作者/读者索取更多资源

This study presents a model-free framework to address the challenge of achieving high-fidelity closed-loop integration on engineering testbeds accessible remotely over a network. By expanding the framework with two design parameters, the delay compensation performance is improved, as demonstrated through simulation and experimental validation.
This work considers connected testbeds, i.e., engineering testbeds that are remotely accessible over a network, and focuses on the challenge of achieving a high-fidelity closed-loop integration despite the network delays. To address this challenge, a model-free framework is presented. In previous work, a model-free delay compensation framework with a single design parameter was developed. However, having only one design parameter could limit tuning flexibility and thus delay compensation performance. Furthermore, this framework has not yet been validated on an actual connected testbed. To address these two shortcomings, in this article, this delay compensation framework is first expanded into a two-parameter form, and its open-loop stability and performance are studied for constant delays. The predictor stability criterion is established in terms of the two design parameters and the constant network delay. To evaluate the transient delay compensation performance of this framework and understand its advantages and limitations, simulation case studies are conducted on a connected engine testbed representing a medium-duty diesel pickup truck. These studies include two testbed architectures, constant and variable delays, two drive cycles, two levels of driver aggressiveness, and a comparison against wave transformation as a state-of-the-art benchmark. Finally, the framework is tested experimentally on a physical realization of the same connected testbed. The results validate the robustness of the delay compensation performance of the framework under dynamic operations, and show up to 30% higher integration fidelity due to the additional design degree of freedom introduced through the two-parameter form.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据