4.7 Article

Plant Population and Row Spacing Affects Growth and Yield of Rainfed Maize in Semi-arid Environments

期刊

FRONTIERS IN PLANT SCIENCE
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2022.761121

关键词

leaf area index; conservation agricultural practices; soil water; dryland agriculture; regenerative agriculture; corn; row width; plant density

资金

  1. Maize Trust
  2. AgriSETA
  3. South African Society of Crop Production

向作者/读者索取更多资源

This study investigated the impact of maize population density and row spacing on yield in a semi-arid environment. The results showed that different row spacing had different effects on light interception and leaf canopy cover, while the impact of plant population density on yield was related to rainfall distribution.
Increased tolerance to competition for soil resources of modern maize (Zea mays L.) hybrids increases soil resource use efficiency and yield. Yet little information is available on the relationship between maize population density and yield under no-tillage in semi-arid environments. A 2-year field trial was conducted in South Africa during the 2017/2018 (Season 1) and 2018/2019 (Season 2) production seasons to evaluate growth and water use productivity of rainfed maize established at seven diverse plant population (20,000-60,000 plants ha(-1)) and row spacing (0.52 and 0.76 m) configurations. In Season 1, light interception was 6.8% greater at 0.76 m row spacing compared to 0.52 m row spacing (p < 0.05). In Season 2, despite dry and hot growing conditions, a well-developed leaf canopy cover was present at 0.52 m row spacing indicating a 10.4% greater intercepted photosynthetically active radiation (IPAR) compared to 0.76 m row spacing. In Season 1, with more uniform rainfall distribution, no biomass or yield benefits were found with increased plant population, except at 50,000 plants ha(-1) at 0.76 m row spacing. In Season 2, plant populations at 0.76 m row spacing out-yielded any given plant population at 0.52 m row spacing. The optimal plant population and row spacing will ultimately be a compromise between obtaining high maize grain yield and minimizing the potential for crop failure in semi-arid environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据