4.7 Article

Effects of Vegetation Phenology on Ecosystem Water Use Efficiency in a Semiarid Region of Northern China

期刊

FRONTIERS IN PLANT SCIENCE
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2022.945582

关键词

water use efficiency; phenology; climate change; carbon-water cycle; gross primarily productivity (GPP); evapotranspiration (ET)

资金

  1. National Science Fund for Distinguished Young Scholars [42025101]
  2. 111 Project [B18006]

向作者/读者索取更多资源

This study analyzed the interannual changes in seasonal water use efficiency (WUE) in the Luanhe River basin, a typical semiarid region of China, from 1988 to 2015, using multiple long-term remote sensing datasets. The study also discussed the potential associations between phenology and WUE. The findings showed that spring WUE increased and autumn WUE decreased across most of the study area. The study also revealed the contrasting correlations between WUE and phenology parameters in the upper reaches and middle-lower reaches regions.
Water use efficiency (WUE) is an important ecosystem functional property for measuring coupled relationships of the carbon-water cycle. Both biotic and environmental factors significantly impact WUE in terrestrial ecosystems. Relationships between environmental factors and WUE have been well discussed in previous studies. Although the crucial role of vegetation phenology, a common indicator of climate-vegetation interactions, in regulating the WUE has been widely reported, the underlying mechanism has not yet to be fully elucidated. Here, we utilized multiple long-term remote sensing datasets to analyze the interannual changes in seasonal WUE, and discussed the potential associations between phenology and WUE in the Luanhe River basin, which is a typical semiarid region of China, from 1988 to 2015. Most of the pixels across Luanhe River basin showed increasing spring WUE and decreasing autumn WUE. The start of the growing season (SOS) was slightly advanced by an average of 0.06 days per year (d/y) in the whole study area, with a delayed trend (0.04 d/y) in the upper reaches region (UR) and an advanced trend (0.20 d/y) in the middle-lower reaches region (MLR). The end of the growing season (EOS) showed a generally delayed trend (0.11 d/y) across the basin. Furthermore, negative correlations were detected between spring WUE and SOS in the UR, while positive correlations were detected in the MLR. The opposite patterns of the relationship of autumn WUE and EOS were also found between UR and MLR. The results were attributed to the balance and compensation of biotic and abiotic factors in the regulation of ecosystem WUE. Our findings provide new insights into the interaction between vegetation dynamics and carbon-water cycle coupling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据