4.6 Article

Essential Oils From Citrus unshiu Marc. Effectively Kill Aeromonas hydrophila by Destroying Cell Membrane Integrity, Influencing Cell Potential, and Leaking Intracellular Substances

期刊

FRONTIERS IN MICROBIOLOGY
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2022.869953

关键词

Citrus unshiu Marc; essential oil; chemical composition; antibacterial activity; Aeromonas hydrophila; mode of action

资金

  1. National Natural Science Foundation of China [32073020]
  2. Key Projects of Hunan Education Department [20A238]
  3. Changsha Municipal Natural Science Foundation [kq2014070, kq2202332]
  4. Key Research and Development Program of Hunan Province [2021NK2025]
  5. Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of China [S2021KFKT-22]

向作者/读者索取更多资源

This study evaluated the antibacterial activity of essential oil from satsuma mandarin against Aeromonas hydrophila, demonstrating strong potential for controlling and preventing infections in aquaculture.
Aeromonas hydrophila is one of the important pathogenic bacteria in aquaculture causing serious losses every year. Essential oils are usually used as natural antimicrobial agents to reduce or replace the use of antibiotics. The aim of this study was to evaluate the antibacterial activity and explore the mechanisms of essential oil from satsuma mandarin (Citrus unshiu Marc.) (SMEO) against A. hydrophila. The results of the gas chromatography-mass spectrometer demonstrated that SMEO contains 79 chemical components with the highest proportion of limonene (70.22%). SMEO exhibited strong antibacterial activity against A. hydrophila in vitro, the diameter of the inhibition zone was 31.22 +/- 0.46 mm, and the MIC and MBC values were all 1% (v/v). Intracellular material release, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and flow cytometry analysis revealed the dynamic antibacterial process of SMEO, the morphological changes of bacterial cells, and the leakage process of intracellular components. These results demonstrated that SMEO disrupted the extracellular membrane permeability. Our study demonstrated that SEMO has the potential to be used to control and prevent A. hydrophila infections in aquaculture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据