4.5 Article

Tropical Air Chemistry in Lagos, Nigeria

期刊

ATMOSPHERE
卷 13, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/atmos13071059

关键词

Lagos; Nigeria; air pollutants; atmospheric chemistry; low-cost sensors

资金

  1. World Bank

向作者/读者索取更多资源

The Nigerian city of Lagos is heavily polluted due to emissions and subsequent atmospheric photochemistry and aerosol chemistry. A year-long study was conducted to measure gas-phase and aerosol processes in urban areas, revealing the presence of combustion sources and local photochemical reactions. Meteorological variability and seasonal changes also had an impact on air quality in the region.
The Nigerian city of Lagos experiences severe air pollution as a result of emissions and subsequent atmospheric photochemistry and aerosol chemistry. A year-long study, between August 2020 and July 2021, included measurements of gas-phase and aerosol processes, with surface meteorology at six urban sites. The sites were selected to represent near seacoast conditions, urban sites, and inland locations near agricultural and grassland ecosystems. The observations included continuous concentrations for CO, SO2, NOx, O-3, PM2.5, and PM10. Samples were collected and analyzed for speciated volatile organic compounds (VOCs) and particulate chemical composition including inorganic and organic chemical species. The average diel variations in concentrations indicated well-known local photochemistry resulting from the presence of combustion sources, including motor vehicles, petroleum production and use, and open burning. The annual diel characteristics were emission-dependent and were modulated by meteorological variability, including the sea breeze and the seasonal changes associated with monsoons and Harmattan winds. Gases and particulate matter varied daily, consistent with the onset of source activities during the day. Fine particles less than 2.5 mu m in diameter (PM2.5) included both primary particles from emission sources and secondary particles produced in the atmosphere by photochemical reactions. Importantly, particle sources included a large component of dust and carbonaceous material. For the latter, there was evidence that particle concentrations were dominated by primary sources, with little secondary material formed in the atmosphere. From complementary measurements, there were occasions when regional chemical processes affected the local conditions, including transportation, industry, commercial activity, and open waste burning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据