4.6 Review

Nanomaterial-Based Sensors for the Detection of Glyphosate

期刊

WATER
卷 14, 期 15, 页码 -

出版社

MDPI
DOI: 10.3390/w14152436

关键词

glyphosate; nanomaterials; sensor; water-detection; herbicide

资金

  1. CONACYT [364335]

向作者/读者索取更多资源

This review presents the recent advances in developing nanomaterial-based sensors for glyphosate detection. It emphasizes the advantages of nanosensors over traditional methods and reviews the characteristics and potential applications of different types of nanomaterials.
Due to its chemical properties, glyphosate [N-(phosphonomethyl)glycine] is one of the most commonly used agricultural herbicides globally. Due to risks associated with human exposure to glyphosate and its potential harmfulness, the need to develop specific, accurate, online, and sensitive methods is imperative. In accordance with this, the present review is focused on recent advances in developing nanomaterial-based sensors for glyphosate detection. Reported data from the literature concerning glyphosate detection in the different matrices using analytical methods (mostly chromatographic techniques) are presented; however, they are expensive and time-consuming. In this sense, nanosensors' potential applications are explained to establish their advantages over traditional glyphosate detection methods. Zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three- dimensional (3D) materials are reviewed, from biomolecules to metallic compounds. Bionanomaterials have generated research interest due to their selectivity with respect to using enzymes, DNA, or antibodies. On the other hand, Quantum Dots also are becoming relevant for their vast surface area and good limit of detection values (in the range of pM). This review presents all the characteristics and potential applications of different nanomaterials for sensor development, bearing in mind the necessity of a glyphosate detection method with high sensitivity, selectivity, and portability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据